
Tr. J. of Physics
23 (1999) , 725 { 729.
c
 T�UB_ITAK

Stability of Quasi-Two-Dimensional Bipolarons

R. Tu�grul SENGER, Atilla ERC�ELEB_I

Department of Physics, Bilkent University, 06533 Bilkent, Ankara, TURKEY

Received 01.03.1999

Abstract

The stability criteria of quasi-two-dimensional dimensional bipolarons have been
studied within the framework of strong coupling and path-integral theories. It is
shown that the critical values of the electron-phonon coupling constant (�), and the
ratio of dielectric constants (� = �1=�0) exhibit some non-trivial features as the
e�ective dimensionality is tuned from three to two.

1. Introduction

Two electrons in an ionic or polar crystal may form a bound state, provided that the
phonon-mediated attractive forces between them are strong enough to counterbalance
the Coulomb repulsion. Such a quasiparticle, consisting of two electrons and a common
cloud of virtual phonons is termed a bipolaron. The properties of the bipolaron state
and the critical conditions for its formation have been studied extensively [1-7]. The aim
of the present work is to investigate the stability criteria of bipolarons in a quasi-two-
dimensional (Q2D) medium.

For the bipolaron formation to be favorable, one should have: Eg < 2E
(1)
g , where Eg

and E
(1)
g are respectively, the bipolaron and one-polaron ground state energies which are

calculated within identical frameworks. On this purpose, we will borrow the one-polaron
energy values from the relevant works [8,9].

2. Theory

The Hamiltonian describing the con�ned electron{pair coupled to LO-phonons is

H = He +
X
Q

ayQaQ +
X
j=1;2

X
Q

VQ

�
aQe

i ~Q�~rj + ayQe
�i ~Q�~rj

�
; (1)

He =
X
j=1;2

�
1

2
p2j + Vconf(zj)

�
+

U

j~r1 � ~r2j : (2)
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Here we use dimensionless units for which m? = ~ = !LO = 1. In the above, aQ and

ayQ denote the phonon operators, and ~rj = (~�j ; zj), (j = 1; 2), are the positions of the
electrons in cylindrical coordinates. Similarly, ~pj denote the respective momenta of the

electrons. The Fr�ohlich interaction amplitude is related to the phonon wavevector ~Q =
(~q; qz) through VQ = (2

p
2��)1=2j ~Qj�1. The coupling constant is given, in terms of the

high frequency and static dielectric constants of the material, by � = e2
�

1
�1

� 1
�0

�
=
p
2 in

terms of which the unscreened Coulomb repulsive amplitude is U = e2=�1 = �
p
2=(1��),

where � = �1=�0 < 1. For the con�ning potential we use a harmonic oscillator pro�le
with adjustable barrier slopes, i.e., we set Vconf(z) =

1
2


2z2, in which the dimensionless
frequency 
 serves for the measure of the degree of con�nement of the electrons. When
tuned from zero to in�nity, it yields a unifying display of the phase stability of the
bipolaron as a function of the e�ective dimensionality ranging from three to two.

2.1. Strong Coupling Theory

In the limit of strong �, it is convenient to use the adiabatic Pekar theory, where one
assumes a separable form for the phonon and the particle coordinates of the bipolaron
state,

	bipol = �(~R;~r) eU j0i (3)

where j0i is the phonon vacuum state, and eU is the operator of optimal displaced-

oscillator transformation with U =
P

Q fQ (aQ � ayQ). For the particle part, we assume

a variational form which is separable in the center of mass, ~R = (~r1 + ~r2)=2, and the

relative, ~r = ~r1 � ~r2, coordinates, i.e. �(~R;~r) = �(~R) � '(~r). We choose the following
oscillator type anisotropic waveforms

�(~R) = NR exp

�
�1

2
�21(R

2
% + �21R

2
z)

�
'(~r) = Nr r


 exp

�
�1

2
�22(r

2
% + �22r

2
z)

�
: (4)

The bipolaron ground state energy is calculated by optimizing ofE
(SC)
g � h	bipoljHj	bipoli,

with respect to the variational parameters f�i; �ig; (i = 1; 2), contained in the wavefunc-
tion, with 
 taken as either 0 or 1.

2.2. Path Integral Formulation

Feynman's path integral formulation of the polaron systems, is also a variational
technique, but it provides the lowest energy upper bounds and it is reasonably valid for
all values of the electron-phonon coupling constant.

Following the standard formulation [2,9,10], after the elimination of the phonon vari-
ables, the partition function of the system can be written as a path integral,

Z =
Y
i=1;2

 Z
d~r0

Z ~ri(�)=~r0

~ri(0)=~r0

D~ri(�)
!

eS[~r1(�);~r2(�)] : (5)
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Here, � is the inverse temperature and S is the action expressed in imaginary time
variables (t! �i�):

S = �1

2

Z �

0

d�
X
i=1;2

�
_~r 2i (�) + 
2z2i (�)

�
�
Z �

0

d�
U

j~r1(�)� ~r2(�)j + Se�p ; (6)

Se�p =
1

2

X
i=1;2

X
j=1;2

X
Q

V 2
Q

Z �

0

d�

Z �

0

d�0G(!LO=1)(�� �0) ei
~Q�[~ri(�)�~rj(�

0)] : (7)

In the above G!(u) is the Green's function of a harmonic oscillator with frequency !. The
introduction of a trial action S0 provides us with a convenient variational upper bound
to the ground state energy, led by the Jensen-Feynman inequality

E(PI)
g � E0 � lim

�!1

1

�
hS � S0iS0 (8)

where the notation h:::iS0 denotes a path-integral average with density function eS0 , and
E0 is the trial ground state energy corresponding to S0. For the trial action, we choose
the same model, which was successfully applied previously to similar polaron or bipolaron
problems [2,9,10], where the electrons are considered to be in harmonic interaction with
�ctitious masses.

3. Results

The Q2D-bipolaron ground state energies E
(SC)
g and E

(PI)
g are calculated numerically,

and comparing them to twice the corresponding one-polaron energies [8,9], the critical
� and � values are obtained as functions of the degree of con�nement. The work by
Verbist et al. [3] on bipolarons reveals that the strong coupling theory does not provide
information on any critical value of �; and the value of �c strongly depends on the form
of the wavefunction adopted. For instance, choosing 
 = 0 for the relative coordinate
part of the wavefunction, one gets �c = 0:079 in both 3D and 2D [3]. On the other hand
for 
 = 1, those values are 0.131 and 0.158 for 3D and 2D, respectively. Our strong
coupling results indicate that �c smoothly varies from the bulk to the 2D limit values as
the e�ective dimensionality is tuned from three to two (Fig.1(a)). It is intersting to note
that �c experiences a relative decrease when the size of the external potential becomes
comparable to the e�ective size of (bi)polaron (
=�2 � 1). The results of the more
powerful theory, path integral (PI) formalism, however have explicit dependence on �,
and in Fig.1(a) it is also seen how PI results con�rm to the SC results with 
 = 0. It is
reported previously that the bipolaron formation is more favourable in 2D than it is in
bulk [2,5,6]. The statement is true if one considers the two extreme limits, with � = 0.
However in the transition region (10 � 
 � 104), for non-zero �, �c can be much larger
than its bulk value (c.f. Fig.1(b)). For example, choosing � = 0:065, the bulk value is
�c = 15:0 and its 2D value is �c = 6:6; but �c can be as high as 35.3 for 
 = 103. These
salient features observed for Q2D bipolarons arise from the dependence of the competing
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counter-e�ects (phonon mediated atractive forces and the repulsive Coulomb forces) on
the degree of con�nement.
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Figure 1. (a) The critical value of ratio of dielectric constants below which the bipolarons can

form. The solid curves are path integral results for � = 4; 6; 7; 10; 20; 30; 50 (from bottom to top).

The strong coupling results for the wavefunction with 
 = 0 (dashed) and 
 = 1 (dot-dashed)

are also given. (b) The path integral results for the critical � values over which the bipolarons

exist. The curves are for � = 0; 0:03; 0:05; 0:06; 0:065; 0:07 (from bottom to top) respectively.
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