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Pairing correlations in a two-layer Hubbard model are studied using (1) an Eliashberg-like approxima-
tion for the exchange of spin fluctuations and (2) quantum Monte Carlo simulations. A possible pair
structure in which the gap has one sign on the bonding and the opposite sign on the antibonding Fermi
surface is found. Some implications of this for the transport properties of the cuprate superconductors

are discussed.

I. INTRODUCTION

While various calculations have shown that many of
the normal-state properties of the cuprate superconduc-
tors can be understood within the framework of a two-
dimensional Hubbard model, the nature of the supercon-
ducting state and the mechanism for pairing remain a
puzzle.! Diagrammatic calculations using an interaction
obtained from the exchange of an antiferromagnetic spin
fluctuation lead to a low temperature dxz_yz-wave pairing

instability for a doped two-dimensional (2D) Hubbard
model.>”> Recent Monte Carlo calculations of the
particle-particle vertex® show, for the lattice size and
temperatures reached in the simulation, that there is an
attractive pairing interaction in the deyZ channel.

However, only short-range dxz_yz pair-field correlations

have been seen in these simulations.” One might argue
that the tendency toward pairing is increased when a
next-nearest-neighbor one-electron hopping is included.?
Indeed, such a term is expected from the oxygen-oxygen
overlap and has been shown to enhance the d, 2_,2 pair-

field susceptibility.” Nevertheless, it remains difficult to
reconcile the temperature dependence of the Knight
shifts'®~'2 and the penetration depth!® in YBa,Cu;0,_;
with a gap that has nodes.

Here we study a two-layer Hubbard model in which a
one-electron hopping ¢, couples the layers and gives rise
to bonding and antibonding Fermi (p,p,) surfaces.
Within an Eliashberg-like calculation based on the ex-
change of spin fluctuations, we find parameter regimes in
which the dominant pairing instability has a gap that is
positive on one Fermi surface and negative on the other.
Such a nodeless d,-wave gap gives rise to unusual trans-
port properties which are discussed in the conclusion.

In Sec. II we show the bonding and antibonding Fermi
surfaces for several one-electron parameterizations of the
band structure of the two-layer model. Then we discuss
the magnetic spin susceptibility and the pair-field suscep-
tibilities, comparing Monte Carlo results with random-
phase-approximation (RPA)-Eliashberg calculations for
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the half-filled band where the fermion determinant is pos-
itive. In Sec. IIl, based upon the results of Sec. II, we
study the Bethe-Salpeter equations for the pair field.
Here we find parameter regimes in which the pair field
with the most unstable eigenvalue has d, symmetry. Im-
plications of this for the transport properties of this two-
layer model and some comments on the possible relation-
ship of these ideas to the cuprate oxide superconductors
are contained in Sec. IV.

II. THE TWO-LAYER MODEL
AND SOME COMPARISONS
WITH MONTE CARLO RESULTS

For a two-layer, two-dimensional Hubbard model, with
an intralayer nearest-neighbor hopping ¢ and an inter-
layer nearest-neighbor hopping 2¢;, the single-particle
band energy is

€,= —2t(cosp, +cosp,)—2¢,cosp, . (1)

Here p, can take on the values O and 7. Figure 1(a)
shows the bonding (p, =0) and antibonding (p, =) Fer-
mi surfaces for {(n)=1.0 and ¢, =0.4¢. Throughout this
paper we will measure energies in units of ¢z. If an in-
tralayer next-nearest-neighbor hopping ¢’ is introduced,

€, = —2t(cosp, +cosp, ) —4t’cosp,cosp, —2t,cosp, . (2)

P

In this case a variety of Fermi surfaces can be produced.
Figure 1(b) shows the Fermi surfaces which are found for
t,=0.41, t'=—0.2t, and a site filling {(n ) =0.85.

In the presence of an interlayer hopping ¢, the peak in
the magnetic spin susceptibility x(q,i®,, =0) shifts from
having g, =0 to g, =m. Here,

X(@iw, =0)=[Pdr(m (imi(0) 3
with
__1 T
m;__ \/'N chJquCpl (4)
p
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and N equal to the total number of lattice sites. Results
for x(q,0) for q=(a,m,7) and (,7,0) obtained from a
Monte Carlo simulation of a 2X(4X4) Hubbard lattice
are shown in Fig. 2. Here U=4¢, t, =0.4t, t'=0, and
©=0, corresponding to a half-filled band having particle-
hole symmetry so that there is no determinental sign
problem. The Fermi surface corresponding to this case is
shown in Fig. 1(a). As the temperature is lowered, we see
that the dominant spin-spin correlations have g, =.

The solid and dashed curves in Fig. 2 show results ob-
tained using an RPA form,

(q,iw,,)
g io, )= — 22 (5)
1—=Uxo(q,iw,,)
with
) 1 Slepig)—flep)
’ m = . . 6
Xol@yieop) N ? [0, — (€, q7¢€p) ©

Here U=2.35¢ is an effective Coulomb interaction ad-
justed so as to fit the RPA form to the Monte Carlo re-

(=m,m) (m,m)

(=m,—m)

(m,—m)
Px

FIG. 1. Fermi surfaces for a two-layer model corresponding
to p,=0 (solid curve) and p,=w (dotted curve). Here (a)
t,=0.4t, t'=0, u=0 ({n)=1.0) and (b) £, =0.41, t'=-—0.2t,
= —0.7t corresponding to {n ) =0.85. The long dashed curve
shows the Fermi surface for t, =¢'=0and (n ) =1.0.
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FIG. 2. Monte Carlo results for y(w,w,7) (circles) and
x(m,m,0) (squares) vs T on a 2X(4X4) lattice for U=4t,
t,=0.4t, t'=0, and p=0. The lines are RPA fits with
U=2.35t

sults. Physically, the introduction of U takes into ac-
count the correlated particle-particle ¢-matrix scattering
and self-energy effects.

To examine the pairing interaction, we have calculated
the pair-field correlation functions

1 rs 1

Pa—ﬁfo dr{A,(TAL0)) , (7)
for

Aiz_yz: > (cosp, —cosp, )c;Tclpl 8)

P

and

AI——“ ZCospzc}‘tTcT_pl . 9

P

Monte Carlo results for P, are shown in Figs. 3(a) and
3(b). The squares show the pair-field susceptibilities in
the absence of interaction vertices,'*

f’ﬁ% S82p) [[drGp(1IG (1), (10)
P

and the circles show P, Eq. (7), which includes the full
effect of the interactions. From Figs. 3(a) and 3(b) one
sees that the interaction is attractive in both the deyZ'
8, =(cosp, —cosp,), and d,, g,=cosp,, particle-particle
channels.

Within the RPA, the effective singlet particle-particle
interaction mediated by the exchange of a spin fluctua-
tion, ! illustrated in Fig. 4, is

Uxolp’'+p)
1—Uxylp'+p)

U3x3p'—p)
1—Ux4p'—p)
(11)

where p represents (p,iw,). Here x((q,iw,,) is given by
Eq. (6) and U is the effective Coulomb interaction. Note
in this expression that the first term U must be the bare

Vip'lp)=U+
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Coulomb interaction since V(p'|p) is to be used in a
particle-particle ladder graph. We have used this interac-
tion, Eq. (11), within a Migdal-Eliashberg-like approxi-
mation,'® illustrated in Fig. 5, to calculate P, and P,.
The results are shown as the solid and dashed curves for
P, and P, respectively, in Figs. 3(a) and 3(b). In this ap-
proximation, vertex corrections are neglected and the pa-
rameters in the basic spin-fluctuation exchange interac-
tion, Eq. (11), are set by adjusting U so that the RPA
form for x(q,iw,) fits the Monte Carlo results for
x(q,iw,,). In addition, the single-particle Green’s func-
tion G(p,iw,) is dressed with the spin-fluctuation self-
energy shown in Fig. 6.

This approach is similar in spirit to the early work on
electron-phonon mediated superconductivity in which
the vertex corrections were neglected and the phonon
propagator was fit to the neutron scattering data. In the
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FIG. 3. Pair-field susceptibilities (a) P, and (b) sz—yZ vs T
for t;,=0.4t, t'=0, and {(n)=1.0. The points are quantum
Monte Carlo (QMC) data with U =4t, and the lines are RPA re-
sults with U=2.35¢. Here the circles and the solid line
represent P, with the Coulomb vertex corrections, and the
squares and the dotted line represent P, without the vertex
corrections.
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FIG. 4. RPA spin-fluctuation contribution to the even-parity
singlet interaction. Here, the dotted line represents the bare
Coulomb repulsion U, and the dashed line represents the re-
duced Coulomb repulsion U.

present case, however, one does not have the usual Mig-
dal result which supported the neglect of the electron-
phonon vertex corrections. While there is a small param-
eter involving the spin-fluctuation energy compared to
the Fermi energy, the strong momentum dependence
arising from the near nesting of the Fermi surface raises
questions. We have, however, looked at the effect of the
lowest-order vertex corrections and find numerically that
they introduce relatively small changes!” in P, for the
lattice sizes and temperatures considered here, consistent
with the comparisons shown in Figs. 3(a) and 3(b). This
encourages us to extend this type of approximation to
study the Bethe-Salpeter equation for the pair field dis-
cussed in Sec. III. Basically, we will use an effective U to
parametrize the interaction equation (11) and neglect ver-
tex corrections. The full momentum and Matsubara fre-
quency dependence will be kept and the single-particle
Green’s-function self-energy will be calculated self-
consistently.

III. THE BETHE-SALPETER EQUATION

As we have seen, there is an attractive interaction in
both the deyl and d, pairing channels. In order to ex-

plore in more detail the structure of the pairing correla-
tions induced by the spin-fluctuation exchange potential
V(p'lp), Eq. (11), we have solved the Bethe-Salpeter
equation shown in Fig. 7:

T

Ap(priw,)= =~

S V(pio,lp,io,)G(pio,)
pn’

XG(—p', —iw,)$(pio,) . (12)

Here, just as before, vertex corrections are neglected, and
the single-particle Green’s function G(p,iw,) is self-
consistently dressed with the spin-fluctuation self-energy,
(see Fig. 6). We will examine the singlet solution with
#(p,iw,)=¢(—p, —iw,).

The frequency dependence of ¢(p,iw,) reflects the
structure of the underlying spin-fluctuation interaction.
However, the momentum dependence is a function of the
structure of x,(q). If the two Fermi surfaces are such
that x,(q) peaks for g,=0, the eigenfunction with the
largest eigenvalue has dxz_yz wave symmetry. In leading

order ¢(p)=cosp, —cosp, on both sheets. If, however,
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FIG. 5. Migdal-Eliashberg approximations for P, and P,,.

FIG. 6. Spin-fluctuation contribution to the self-energy of the
single-particle Green’s function.
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Bethe-Salpeter equation for the gap function

FIG. 7.
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FIG. 8. Temperature dependence of the eigenvalues A, (solid
curve) and )\'xz—yz (dotted curve) of the Bethe-Salpeter equation
for a 2X(4X4) lattice with ¢, =0.4¢, t'=0, U=4¢t, U=2.35t,
and u=0.

the Fermi surfaces are such that x(q) peaks for g,=m,
then the eigenfunction with the largest eigenvalue will
have one sign on the bonding and the opposite sign on
the antibonding Fermi surface. Neglecting the additional
variations with p, and p,, this corresponds to a gap with
cosp, symmetry and in terms of the site operators

Al="3 cos(p, )c;,ctpl =1 ; (cf}cgL —c,ﬁc{'T ) . (13)
P

Here c,Tf creates an electron with spin up on the upper

lattice at site [ =(l,l,) and ch'l creates an electron with

spin down directly below it on the lower lattice.

Our solution of the Bethe-Salpeter equation was car-
ried out on a finite lattice with a cutoff on the allowed
Matsubara frequencies. As the temperature is lowered,
the eigenvalues of the Bethe-Salpeter equation increase.
The transition temperature is determined by the tempera-
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FIG. 9. Momentum dependence of the gap function for (a)

d,- and (b) dxz_yz-wave symmetries on a 2X(4X4) lattice with
t,=0.4t, t'=0, u=4t, U=2.35t, p=0, and T=0.10t. Note
that for the dxz‘y2 symmetry shown in (b) the solid and dashed
lines lay on top of each other within the resolution of this figure.
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FIG. 10. Same as in Fig. 8, but on a 2X(8X38) lattice for
t,=0.4t,t'=—0.2t, U=4t, U=2.35t,and (n )=0.85.
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FIG. 11. Same as in Fig. 9, bgt on a 2X(8X8) lattice for
t,=0.4t, t'=-—0.2t, U=4t, U=2.35t, (n)=0.85, and
T=0.10¢.
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FIG. 12. Same as in Fig. 10, but here A,(7T) and sz_yz( T)

have been calculated without taking into account the self-energy
due to spin fluctuations.

ture at which the largest eigenvalue reaches unity.'®

For the parameters considered in Sec. II, ¢, =0.4¢,
t'=0, and u=0, the temperature dependences of the two
largest eigenvalues are shown in Fig. 8. This calculation
has been done on a 4 X4 lattice with U=2.35¢ as deter-
mined from Sec. IT and a frequency cutoff of 10z. At low
temperatures, the largest eigenvalue is A,. The momen-
tum dependence of its eigenfunction ¢(p,iw,) for
o, =w;=7uT is shown in Fig. 9(a). It has one sign on the
bonding and the opposite sign on the antibonding Fermi
surface, corresponding to cos(p,). The momentum
dependence of the eigenfunction associated with the
second largest eigenvalue, kxz_yz, is shown in Fib. 9(b).
Its behavior is essentially cos(p, ) —cos(p, ).

We have also solved the Bethe-Salpeter equation away
from half-filling. It is possible to find parameter regimes
where the d,-wave pair-field correlations grow faster than
those having dxz*yz-wave symmetry, as the temperature
is lowered. In Fig. 10 we show A,(T) and sz_yz( T) for
one such set of parameters: {n)=0.85, U=4¢,
U=2.35¢, t, =0.4¢, and t'= —0.2¢. This calculation has
been done on a 2X(8X8) lattice using a frequency cutoff
of 5¢. The corresponding eigenfunctions ¢(p,i#wT) versus
p are plotted in Figs. 11(a) and 11(b). They are similar to
Figs. 9(a) and 9(b).

In the model that we are using, the antiferromagnetic
correlations can affect the pair-field correlations in two
ways: the spin-fluctuation exchange potential of Eq. (11)
is roughly proportional to x; hence strong AF correla-
tions enhance the eigenvalues A. However, they can also
suppress A through their effect on the single-particle self-
energy.>!® Figure 12 shows A,(T) and A2 oT) caleu-
lated by neglecting the spin-fluctuation self-energy. Com-
parison of Fig. 12 with Fig. 10 gives a clear indication of
the strong suppression of A, and kxz_yz by the self-
energy.
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IV. CONCLUSIONS

For a two-layer Hubbard model, we have seen that the
interlayer coupling can lead to a magnetic susceptibility
x(m,,) that exceeds y(,,0), reflecting the interlayer
antiferromagnetic correlations. Furthermore, within a
Migdal-Eliashberg-like approximation, using an interac-
tion mediated by the exchange of spin fluctuations, we
have found that the pairing correlations can favor a gap
that has one sign on the bonding Fermi surface and an
opposite sign on the antibonding Fermi surface. This al-
lows a spin-fluctuation exchange interaction that is repul-
sive in momentum space to produce a singlet pairing
state without nodes on the Fermi surface.

As is well known, YB,Cu;0,_g contains a stack of
weakly coupled bilayers. However, these bilayers are
separated by a layer of Y atoms, and the Cu atoms in the
different planes of a bilayer have no intervening oxygen
atom. Thus, the magnetic coupling between layers
occurs via direct exchange rather than a superexchange
interaction. Nevertheless, the neutron scattering is found
to be modulated on a scale set by the bilayer separation,?
reflecting the interlayer antiferromagnetic spin-spin
correlations. In addition, band-structure calculations?!
give a Fermi surface which consists of bonding and anti-
bonding cylinders (along with quasi-one-dimensional
sheets arising from the chains). Thus, it is possible that
the gap could have one sign on the bonding and the oppo-
site sign on the antibonding cylinder. Similarly, one
could imagine alternating signs for the gap on the three
degenerate Fermi-surface cylinders of T1,Ba,Ca,Cu;0,,.

The single-layer materials such as La, ,Sr,CuO,
would apparently require a gap with nodes. However,
within the framework we have been considering in which
the one-electron interactions separate the Fermi surface
into different sheets, it may be that the octahedral tilting
creates a Fermi surface consisting of separate pieces on
which the gap can have opposite signs. This picture of a
“nodeless d wave” is similar to that proposed by
Schrieffer, Wen, and Zhang.?? However, they envisioned
that the modification of the Fermi surface arose dynami-
cally from self-energy effects associated with the spin-
fluctuation interaction, while we are suggesting that the

one-electron band potential is responsible for creating the
J
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FIG. 13. Temperature dependence of the Knight shift for
d,-wave gap symmetry. Here ¢, =t'=0, (n)=0.86, U=21,
2A(0)=4kT,, and T.=0.10z. The crosses are the experimental
Knight shift data on Cu(2) by Barrett et al. (Ref. 10), and the
circles are the O(2,3) data by Takigawa et al. (Refs. 11 and 12).

appropriate pieces of the Fermi surface.

As noted in the Introduction, this work was in part
motivated by the question of whether a d-wave supercon-
ducting state, which arose from the exchange of spin fluc-
tuations, could provide a consistent explanation for the
observed transport properties. Here we conclude by ex-
aming some transport properties for a simple phenome-
nological model in which the gap A, has opposite signs
on the bonding and antibonding Fermi surfaces:

—A, =A(T),

A(px,py,O)——

and A(T') has the usual BCS temperature dependence. In
the following we will assume that ¢, /¢ is sufficiently small
and that the bonding and antibonding Fermi surfaces are
essentially degenerate.

As shown in Sec. IIT and previously discussed, an RPA
form for x(q,i®,,) with an effective U can provide a pa-
rametrization of the susceptibility. Extending this to the
superconducting state by replacing x,(q,/w,, ), Eq. (4), by
the BCS form

(14)

PxsPy>™)

¥5S(q,ie,, ) _1 b 1 p+qE A48 f ptq) —S(Ep)
N<T |2 E, E, —(Ey1q—E,)
+ 1] %eta | ® _ Eptddp Fhprgly | 1S (Epq—f(Ey)
4 Eyvq E, E, 4E, [0, +(Eyq+E,)
+l 1+_€p+q _Ep _ EpiafptApighy | S(Epi )t f(E )] (15)
4 E,.q E, E, E, io, —(E 4 q+E,)
I
represents the simplest approximation that takes into ac- (0,0)= X§5(0,0) (16)
count both the antiferromagnetic and superconducting X0 1— UxBS(0,0) ’
correlations.”® Then the Knight shift K(T) is just pro-
portional to the q—0, »,, =0 limit of y(q,i®,, ), with
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YBSS(0,0)= L

N = f(Ep), (17)

(pysp))

the usual Yosida function. Since Ep=\/ E§+AI2), the
low-temperature dependence follows the standard BCS
behavior. Results for U=2¢ and 2A(0)/kT, =4 are com-
pared with the experimental data'® ! in Fig. 13. The
Stoner enhancement factor [1—Ux85(0,0)]7! is of or-
der 1.7 at T, and decreases to 1 as T drops below 7,.%
This produces a more rapid falloff of K (T')/K¢(T,) than
the simple Yosida function which would require a
2A(0)/kT, ratio of order 5 to fit the data without the

1.5 T I T T T I T [ T
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-
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-
0 L | )
0 0.2
16 ——1————————
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L i
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T L
iy
0.5
F
0 L | L
0 0.2
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FIG. 14. Temperature dependence of the (a) O(2,3) and (b)
Cu(2) nuclear relaxation rates for a d,-wave gap symmetry. The
points are the experimental data (Refs. 32 and 12) taken in an
orienting magnetic field of 8T along the ¢ axis, which reduces T,
to 86 K. Since the experimental value of T; ! at T, =86 K is
not available, we have renormalized T;! by its value at T=85
K. The parameters used to fit the data are ¢, =t=0,
(n)=0.86, U=2t, T(T)=0.6T.(T/T,), 2A,=5kT, and
T,=0.10t.
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Stoner factor. We find that the low-temperature behavior
of the penetration depth has the same nodeless behavior
as K, reflecting the nonzero magnitude of the gap.

The fact that the gap has one sign on the bonding and
the opposite on the antibonding Fermi surface leads to a
suppression?* of the Hebel-Slichter peak in the nuclear
relaxation rate 77 ! of both the Cu and O. Using the an-
alytic continuation of x(q,i®,, ), T1 ' for a nominal spin-
1 system is given by

T '=

12|A(q)|2m_ﬂ)_ . (18)
N4 ©

0=0

Here | 4(q)|? is the appropriate hyperfine form factor for
the Cu(2) or O(2,3) nuclei. Using the same RPA parame-
trization of x(q,w) and the Mila-Rice? form factor
| A(q)|? that was previously used to fit the normal-state
T> T, data,”® we have calculated 7| ' for T <7, with
X5 and the gap from Eq. (14).2” Results for 7| ! for Cu
and O are compared with experiment in Figs. 14(a) and
14(b). We note, however, that while the dip in the
(T, /(T"), anisotropy ratio of the Cu(2) relaxation
rate below T, is reproduced by the form of the gap given
in Eq. (14), the subsequent rise of this ratio observed ex-
perimentally?® and predicted?® for a dxz_yz gap is not
present.

Within this model for Aj, we find that the q~0 mi-
crowave conductivity o (v, T) exhibits the usual Hebel-
Slichter peak.?®3° This may be further enhanced if the
quasiparticle lifetime increases below T, as discussed by
Nuss et al.®®

Finally, we conclude by noting that for this form of the
gap, the neutron scattering intensity for momentum
transfer near Q={(m,m,7m) will exhibit a sharp peak at

15 —r———77——7——

3 i
o L
= i
£ i
05

0
0

w/t

FIG. 15. Spin-fluctuation spectral function Imy(q,») vs @
for the U=0 system at q=(,,7) (solid curve) and q=(7,7,0)
(dotted curve). Here the parameters are t, =t'=0, {(n)=1.0,
T=0.02t, and A;=0.20¢.
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©~2A(T) in contrast to the gradual onset for an s-wave
gap. This is because A, o= —A so that the coherence
factor at threshold is unity rather than zero, while the
density of states has its usual square-root singularity.’!
In Fig. 15, we illustrate this by plotting Imy,(q,w), the
solid curve, versus w for q=(,m, ) at half-filling. If the
momentum transfer is changed to (m,7,0) (the dotted
curve), the usual gradual s-wave-like onset is seen. Thus,
this difference in the threshold behavior for these two
momentum transfers would provide a signature for the
type of the gap structure described in this paper.
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