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Recent neutron-scattering experiments on La,; gSr, 14,CuO, find an isotropic but incomplete suppres-

sion of the scattering intensity below T,. Here we show that for a dxl—

,rwave superconductor with a

strong enhancement of the spin-fluctuation scattering and a proper choice of the model parameters, this

is the type of behavior that is expected.

Recent neutron-scattering measurements! * provide

detailed information on the wave vector, frequency, and
temperature dependence of the spin fluctuations in
La, 4¢Sr; 14Cu0O,. At temperatures below T, and frequen-
cies » less than 2A the scattering is suppressed but even
at low temperatures and frequencies, spin-fluctuation ex-
citations were found to persist. In these experiments the
momentum structure of the scattering intensity, while
suppressed, remains similar to that observed in the nor-
mal state.

Some theories>® had predicted an anisotropy in this
suppression, and its absence in the experimental data was
interpreted®’ as evidence against deyz pairing. Howev-
er, we find that these experimental results are consistent
with previous work®’ in which the nuclear relaxation
rates T, ' and T, ' were calculated for the superconduct-
ing state of the cuprates. The model parameters that we
will use here in calculating neutron-scattering intensities
are similar to those used in the previous analysis of NMR
experiments, and small variations in them do not affect
the results. A key feature of this model is the large
enhancement of the incommensurate spin-fluctuation
scattering over that obtained from the bare, band-
structure, BCS magnetic susceptibility. This enhance-
ment is also clearly seen in the large magnitude of the ex-
perimental scattering intensity reported by Mason et al.’

In order to understand this, we consider a simple one-
band Hubbard model with a near-neighbor hopping ¢ and
an on-site Coulomb interaction U:
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Here c,-t, creates an electron of spin o on site i/ of a two-
dimensional square lattice, and u is a chemical potential
used to adjust the band ﬁlling (n)={(n;;+n;).
Monte Carlo calculations'® have shown that at higher
temperatures (7 R 8¢ /50) the magnetic susceptibility
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random- phase-apprommatwn (RPA) form
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Here U is a renormalized interaction strength (e.g.,
U=~2t for U=4t at a filling (n)=0.85), and x, is the
bare band-structure susceptibility.!! Based on this, we
suggested®’ that both the NMR relaxation rates and
neutron scattering in a dxz_y;_ superconducting state
could be analyzed using the RPA form, Eq. (3), with
Xo(q,iw,, >w+i8) replaced by the BCS expression,
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Here Ep=(£l2,+A!2,)1/2 with €,= —2t(cosp, +cosp,)—pu
and A,=[A(T)/2](cosp, —cosp,). The terms in the
brackets in Eq. (4) are the usual BCS coherence factors.

We have evaluated Imy,(q,w) for a filling {n )=0.85
at T=T,, where Ap vanishes, and at 7=0.1T,, where
the dxz_yz-wave gap is well developed. Figures 1(a) and
1(b) show Imy,(q,w) versus q for ©=0.4T, at these two
temperatures. @~ We have taken T,=0.05t and
2A(0)/kT.~6 so that ®=0.4T, is small compared to
2A(0). These results were obtained from the numerical
evaluation of the imaginary part of Eq. (4) on a 512X 512
lattice with a finite broadening I'=0.03¢ for T=T_, and
I'=0.005¢ for T=0.1T,. At T=T,, Imy,(q,») peaks at
an incommensurate edge wave vector Qj [see the inset in
Fig. 3(a)] but at T=0.1T,, where the dxz_yz gap is well
formed, the dominant structure in Imy,(q,®) is associat-
ed with the nodal contributions along the diagonal at Q,.
When Figs. 1(a) and 1(b) are extended to form a repeating
zone, the change in the pattern of intensity between
T=T, and T=0.1T, has been described as a “45° rota-
tion of the peak structure.” This is the type of dxz_yz an-
isotropy predicted in models that either neglect® or have
a relatively small spin-fluctuation enhancement.®

From Eq. (3), we have
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FIG. 1. Imaginary part of the bare magnetic susceptibility
Imy,y(q,w) vs q for (a) T=T, and (b) T=0.1T,. Here ©=0.4T,
and 2A(0)/kT,=6, corresponding to an «/2A(0)=0.067, and
the results are plotted in units of # ~.
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Imy(q,0)=

This is plotted in Fig. 2 versus q for T=T, and 0.1T,
with ©=0.4T, and should be compared with Fig. 1. With
the enhancement factor [1—U Rey,(q,@)] 2 which
peaks at the incommensurate momentum transfer Qg, the
peaks remain at Qg even down to temperatures of 0.17,.

In order to obtain a clearer comparison with experi-
ment, we have averaged Imy(q,») over a resolution el-
lipse similar to the resolution function of Ref. 4, and plot-
ted the results for q varying along the solid and dashed
lines shown in the inset to Fig. 3(a). The response shown
in Fig. 3(a) corresponds to q varying along the solid line
and passing through the incommensurate peak at Qs. As
the temperature is lowered, (Imy(q,w)) averaged
around Qj decreases by approximately 50% for
©=0.4T,. Figure 3(b) shows that the peak at Q, also de-
creases and furthermore, the ratio of the Q, to Qs peak
heights remains essentially unchanged.

The temperature dependence of {Imy(q,w)) is sum-
marized in Fig. 4. The dependence of {Imy(q,»)) on
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FIG. 2. Imaginary part of the RPA susceptibility Imy(q,®)
vs q for (a) T=T, and (b) T=0.1T, with ©=0.4T,.
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FIG. 3. Momentum dependence of {Imy(q,»)), averaged
over an ellipse centered at q, for ¥=0.4T,. (a) For q varying
along the solid line passing through Qs shown in the inset. (b)
For q varying along the dashed line passing through Q, shown
in the inset. Here results are given for T=T, (solid lines),
0.4T, (dotted lines), and 0.1T, (dashed lines).

T /T, is shown in Fig. 4(a) for q averaged around Qj at
various frequencies. Figure 4(b) shows (Imy(q,»)) for
®=0.4T_, normalized to its value at T, versus T /T, for
q averaged around Qs and Q,. The relatively isotropic
suppression of {Imy(q,»)) below T., calculated from
Egs. (4) and (5) with a dxz_yz-wave gap, is consistent with

the experimental observations.

To summarize, we believe that the strength of the
scattering, characterized by the size of Imy(q,»)/w, im-
plies that there is a large enhancement of the spin fluctua-
tions and that this must be taken into account in the
description of the superconducting state. When this is
done, within the approximate RPA-BCS framework pre-
viously proposed®® one obtains results, which are con-
sistent with recent neutron-scattering measurements.

Further work, which treats the band structure within
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FIG. 4. (a) Temperature dependence of {Imy(q,w)) aver-
aged around Q; at various frequencies. (b) Response
(Imy(q,®)) vs T/T,., normalized to its value at T,, for
®=0.4T. and q averaged around Q; (solid line) and Q, (dotted
line).

the three-band Hubbard model so as to obtain the correct
splitting of the incommensurate peak is of interest. Fur-
thermore, at low reduced temperatures and low frequen-
cies, the quasiparticle lifetime is dominated by impurity
scattering. Preliminary calculations'? of the effect of un-
itary scattering on Imy,(q,») show that it acts to main-
tain the peaks at Qz. The resulting RPA form is similar
to that reported here.
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FIG. 1. Imaginary part of the bare magnetic susceptibility
Imy,y(q,w) vs q for (a) T=T, and (b) T=0.1T7,. Here ®=0.4T,
and 2A(0)/kT. =6, corresponding to an @ /2A(0)=0.067, and

the results are plotted in units of ¢ .



FIG. 2. Imaginary part of the RPA susceptibility Imy(q,w)
vs q for (a) T=T, and (b) T=0.1T, with ©=0.4T,.



