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Effective electron-electron interaction in the two-dimensional Hubbard model
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The structure of the effective electron-electron interaction in the doped two-dimensional Hubbard
model is examined. Monte Carlo results for the irreducible electron-electron vertex in the singlet chan-
nel are compared with a spin-fluctuation exchange approximation for the effective interaction. We con-
clude that the exchange of paramagnetic-antiferromagnetic spin fluctuations mediates the effective-
pairing interaction in the weak-to-moderately-coupled Hubbard model.

One approach to describing the mechanism for high-
temperature superconductivity focuses on the charac-
teristic fluctuations in a given model and the nature of
the effective interaction which the exchange of these fluc-
tuations mediates. For example, the dominant fluctua-
tions in the doped Hubbard model are paramagnetic-
antiferromagnetic spin fluctuations and it has been sug-
gested that the effective electron-electron interaction in
the weak-to-moderately-coupled Hubbard model is medi-
ated by the exchange of these fluctuations.”?> However,
the degree to which such a fluctuation exchange interac-
tion provides an accurate representation is not known.
In particular, do single spin-fluctuation exchange pro-
cesses dominate or are higher-order multiple-spin-
fluctuation®>* exchanges essential? What about vertex
corrections?’~’ Here we examine these questions for the
Hubbard model by comparing quantum Monte Carlo re-
sults for the irreducible vertex with an effective interac-
tion describing the single exchange of a spin fluctuation.
Our goal is to determine the extent to which the Monte
Carlo results for the irreducible vertex can be adequately
modeled by a single spin-fluctuation exchange. We will
also examine the spatial structure of the interaction to
obtain additional physical insight into its nature. Previ-
ously, we studied the eigenvalues and eigenfunctions of
the Bethe-Salpeter equation associated with this vertex.®®
Here we focus directly on the structure of the interaction
and its relationship to the underlying antiferromagnetic
spin fluctuations.

The calculations which will be discussed were carried
out for a two-dimensional Hubbard model with the Ham-
iltonian

H=—-t 3 (ciLcjo+cJTgcia)+U§: nin;, (1)
({ij)o i
Here c,-t, creates an electron of spin o on site i,¢ is a one-

electron near-neighbor transfer, and U is the on-site
Coulomb interaction. Quantum Monte Carlo simula-
tions® were carried out for an 8 X8 periodic lattice with
U=4t¢ at a filling {n;;+n;, ) =0.87. The lowest tempera-
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ture considered here is 7=t /4 corresponding to an ener-
gy 3 of the bandwidth. If the exchange interaction J
were approximated by 4t2/U, then for U=4t¢ this tem-
perature would correspond to J/4. These calculations
provide a description of the interaction on space and time
scales which are larger than the characteristic spin-
fluctuation correlation length and the inverse of the ex-
change coupling energy. Thus, while one is significantly
above the temperature at which the interaction may in-
duce pairing correlations, the interaction should be well
enough formed to obtain useful insight into its basic
structure.

The spin fluctuations can be characterized by the mag-
netic spin susceptibility

, _1 B
X(q,mm)——FEI‘, fo dre

i(a)m-r—q-l)< m'.:-I(T)mi+(o) ) ,

(2)

with m,~_=c;&c,-f. Here w,, =2m«T is the usual boson
Matsubara frequency and

m; (t)=exp[(H —uN)rlm; exp[| —(H—uN)r] (3)

with u the chemical potential. Figure 1(a) shows Monte
Carlo results for x(q,0) for various temperatures. As T
decreases below the characteristic exchange energy,
strong antiferromagnetic correlations are seen to develop.
In Fig. 1(b), the »,, dependence of x(q,i®,,) is shown for
q=(m,m). The rapid falloff is associated with the spin-
fluctuation energy scale.

In the same simulation, the two-particle Green’s func-
tion G, was calculated,

GZ(X4,X3,.X2,X| )=—<TCT(X4)Cl(X3)CI(x2 )Cﬁ(xl ) .

4)

Here cz(x,-) with x; =(1;,7;) creates an electron of spin o
at site /; and imaginary time 7;. T is the usual 7-ordering
operator. After taking the Fourier transform of both the
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FIG. 1. Momentum dependence of x(q,iw,, =0) along the
(1,1) direction. (b) Matsubara frequency dependence of
x(q,iw,, ) for q=(m,m). Here results are shown for various tem-
peratures, and y is given in units where t =1.

space and imaginary time variables, G, can be expressed
in terms of the single-particle Green’s function
G,(p,iw,) and the reducible particle-particle vertex
r(p',k',k,p),

GZ(p'7k’7k7p)='.Sp,p'ak,k'Gl(k)GT(p)

T ’ ’
oy Ok +kG1 (PG (KT
XT(p', k', k,p)G,(K)G1(p) . (5)

Here p=(p,iw,). Using the Monte Carlo results for G,
and G, one can determine the reducible vertex
C(p',k',k,p) from Eq. (5). We are interested in studying
the pairing correlations in the zero center-of-mass
momentum and energy channel; hence we set kK = —p and
k'=—p'. Then, from the t-matrix equation

I (p'lp)=T(p'lp)
+% S T(p'|k)G (—k)G (T (klp)  (6)
k

one can solve for the irreducible vertex I';. In Egq. (6),
I'(p’'|p) denotes T'(p’, —p’, —p,p).

The irreducible two-particle interaction in the singlet
channel is given by

T(p'lp)=1T(p’'lp)+T(—=p'Ip)] . @)

This is the effective electron-electron interaction respon-
sible for pairing in the singlet channel. Here we study the

W, /t

FIG. 2. (a) Momentum dependence of the irreducible vertex
in the singlet channel, I'i(q,iw,, ), for zero energy transfer
®,, =0. Here the incoming momentum p=(,0), the outgoing
momentum p’'=p+q, and w,=w,=7T. (b) Energy-transfer
dependence of TI'(q,iw,) for q=(mm), w,=#T, and
@, =0, to,. Here results are shown for various temperatures,
and I is given in units of .

singlet channel, since the fastest growing pairing correla-
tions near half filling are in this channel.>® Figure 2(a)
shows Monte Carlo results for I'(q,iw, ) versus
q=p’—p with v,, =w, —w,=0. As the temperature is
lowered, I'y; increases at large momentum transfer. Note
that the bare interaction would be equal to a constant
value of 4t. We also observe that the effective interaction
created by U becomes large, reaching a value greater
than twice the bandwidth at q=(m,7). The Matsubara
frequency dependence of I', for q=(m,7) is shown in
Fig. 2(b) at various temperatures.

We now compare this with the single-spin-fluctuation
exchange interaction

I'¥¥(pio,|p i, =U+ig2U%(p' —p,iv, —iw,) .
(8)

This form is motivated by the Berk-Schrieffer interac-
tion,'® which basically has this form with g =1 near the
antiferromagnetic instability. The factor of 3 arises from
the two transverse and one longitudinal spin fluctuations.
In calculating T§r with Eq. (8), we will use Monte Carlo
results for x(q,i®,) and also set g=0.8. The corre-
sponding value of 3.2¢ for the effective coupling gU is
consistent with the results of a Monte Carlo calculation
of the irreducible particle-hole vertex which we have car-
ried out.'"!?2 Formally, Eq. (8) is analogous to the
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FIG. 3. (a) Momentum and (b) frequency dependence of
I'’f(q,io,,) obtained from Eq. (8) using g =0.8. Here results
have been plotted as in Fig. 2.

effective interaction in the electron-phonon superconduc-
tor,

V(gio,)=U+3 |gu!*Di(gin,,) , 9)
A

where D;(q,i®,,) is the dressed phonon propagator and
lgqa|? is the renormalized electron-phonon coupling.

Figure 3(a) shows I'$F(q,iw,, =0) versus q at various
temperatures. These results are to be compared with
I',(q,0) shown in Fig. 2(a). Likewise, Fig. 3(b) shows
that the frequency dependence of T'F is in close agree-
ment with the Monte Carlo results shown in Fig. 2(b).
Considering the simplicity of Eq. (8), the agreement with
the Monte Carlo data is quite good. These comparisons
suggest that a properly renormalized single-spin-
fluctuation exchange interaction is capable of reproduc-
ing the basic features of the effective particle-particle in-
teraction in the weak-to-intermediate-coupling Hubbard
model.

Finally, in order to gain further insight into the struc-
ture of the effective particle-particle interaction it is use-
ful to consider the real-space Fourier transform,
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FIG. 4. Monte Carlo data on the real-space structure of
I',(R) as defined by Eq. (10). The estimated error in these data
is of order 10%.

I (R)= ﬁ 3 /" PRE (' iorlp,io,) (10)
pp’

for the lowest Matsubara frequencies w, =w, =7T. Fig-
ure 4 shows Monte Carlo data on I' (R) as a function of
R for T=0.25t. At R=0, as expected, I';; is strongly
repulsive, but for an electron pair separated by a near-
neighbor distance I' is attractive. As the pair separation
R increases further, I'y; oscillates in sign and its magni-
tude decreases rapidly, reflecting the short-range nature
of the spin-fluctuation-mediated interaction. For energy
transfers which are large compared to the spin-
fluctuation energy scale, the on-site interaction reduces to
the bare repulsion U. The oscillatory spatial structure of
the interaction shown in Fig. 4 has the character of a gi-
ant Friedel oscillation. Pairing correlations with the
proper space-time structure can avoid the large on-site
repulsion while taking advantage of the near-neighbor at-
traction. Thus, for example, the interaction I'y is attrac-
tive in the dxz_yz channel.

We thank N. E. Bickers for helpful discussions. N.B.
would like to acknowledge support by the National Sci-
ence Foundation (DMR91-20000) through the Science
and Technology Center for Superconductivity, and D.J.S.
'would like to acknowledge support for this work from the
Department of Energy under Grant No. DE-FGO3-
84ER45197 and he would also like to acknowledge the
Correlated Electron Theory Program at the Center for
Material Science, Los Alamos National Laboratory.
S.R.W. would like to thank the office of Naval Research
for support under Grant No. N00014-91-J-1143. The nu-
merical calculations reported in this paper were per-
formed at the San Diego Supercomputer Center.

ID. J. Scalapino, E. Loh, and J. E. Hirsch, Phys. Rev. B 34,
8190 (1986).

2N. E. Bickers, D. J. Scalapino, and R. T. Scalettar, Int. J.
Mod. Phys. B 1, 687 (1987); N. E. Bickers, D. J. Scalapino,

and S. R. White, Phys. Rev. Lett. 62, 961 (1989).

3J. R. Schrieffer, X. G. Wen, and S. C. Zhang, Phys. Rev. Lett.
60, 844 (1988).

4A. Kampf and J. R. Schrieffer, Phys. Rev. B 41, 6399 (1990);



9626 BRIEF REPORTS 50

42, 7967 (1990). 12In NMR calculations (Ref. 13) we have used a random-phase-
5A. J. Millis, Phys. Rev. B 45, 13047 (1992). approximation parametrization, Y =xo/(1—Uy,), of the
6K. Yonemitsu, J. Phys. Soc. Jpn. 58, 4576 (1989). Monte Carlo Y, in order to have a simple form that could be
N. Bulut, D. J. Scalapino, and S. R. White, Phys. Rev. B 47, calculated on large lattices at lower temperatures. Here ¥, is

2742 (1993). the noninteracting susceptibility, which neglects the single-
8N. Bulut, D. J. Scalapino, and S. R. White, Phys. Rev. B 47, particle self-energy effects, and U is adjusted to 2¢. However,

6157 (1993). if one were to include the self-energy effects on the irreducible
SN. Bulut, D. J. Scalapino, and S. R. White, Phys. Rev. B 47, magnetic susceptibility, then we find that it is necessary to use

14 599 (1993). U ~3.2t instead of 2t in fitting the Monte Carlo (Ref. 11).
10N, F. Berk and J. R. Schrieffer, Phys. Rev. Lett. 17, 433 13N. Bulut, D. Hone, D. J. Scalapino, and N. E. Bickers, Phys.

(1966). Rev. Lett. 64, 2723 (1990).

1IN Bulut, D. J. Scalapino, and S. R. White (unpublished).



