PHYSICAL REVIEW B

VOLUME 47, NUMBER 5

1 FEBRUARY 1993-1

Comparison of Monte Carlo and diagrammatic calculations for the two-dimensional Hubbard model

N. Bulut
Institute for Theoretical Physics, University of California, Santa Barbara, California 93106

D. J. Scalapino
Department of Physics, University of California, Santa Barbara, California 93106

S. R. White
Department of Physics, University of California, Irvine, California 92717
(Received 10 July 1992)

Monte Carlo results for a two-dimensional Hubbard model in the intermediate-coupling regime U = 4¢
are compared with a diagrammatic spin-fluctuation approximation. Simulations on an 8X8 lattice
doped away from half filling were carried out down to temperatures of order 30 of the bandwidth. Re-

sults for the spin susceptibility x(q,iw,, ), the electron self-energy =(p,iw, ), various pair-field suscepti-
bilities, and the irreducible particle-particle scattering vertex I'(p’,iw,|p,iw,) were obtained. A
random-phase approximation for x(q,i®,,) with a renormalized Coulomb coupling U is shown to pro-
vide a fit to the Monte Carlo data. A similar approximation for the Berk-Schrieffer spin-fluctuation in-
teraction also provides a reasonable fit to the self-energy =(p,iw, ) in the region explored by the Monte
Carlo data. However, a similar approximation for the irreducible particle-particle interaction failed to

reproduce the Monte Carlo results.

I. INTRODUCTION

The nature of the one-electron excitations and their
effective interaction in a two-dimensional Hubbard model
doped away from half filling remain open questions.! In
the doped case, the fermion determinantal sign problem
has made it difficult to carry out definitive numerical
simulations.? However, various simulations have found
evidence for short-range spin correlations, metallic be-
havior,® and short-range d ., pair-field correlations.*>
Here we continue this study and compare Monte Carlo
data for the spin susceptibility y(q,i®,, ), the one-electron
self-energy Z=(p,iw,), various pair-field susceptibilities
P,, and the nparticle-particle scattering vertex
I(p,io,|p,iw,) with diagrammatic approximations.
We are particularly interested in determining to what ex-
tent a spin-fluctuation exchange approximation can
reproduce the Monte Carlo results for these quantities in
the intermediate-coupling regime. We will find that a
random-phase-approximation (RPA) spin-fluctuation
form for x(q,iw,,) with a renormalized interaction U
gives a good fit to the Monte Carlo data at intermediate
coupling and at the temperatures that can be reached.®
In addition, the corresponding Berk-Schrieffer’ spin-
fluctuation exchange interaction provides a reasonable fit
to the one-electron self-energy. However, this renormal-
ized single spin-fluctuation exchange interaction is
significantly weaker than the measured particle-particle
vertex I'(p’,iw, |p,iw,) and underestimates the enhance-
ment of the d ,_ ,-wave pair-field susceptibility P;. In
addition, we find that the leading vertex and crossed
spin-fluctuation exchange contributions fail to provide a

4

Higher-order vertex corrections were calculated, but significant
discrepancies with Monte Carlo results for I' remain.

satisfactory fit of the Monte Carlo data for I".

To put these results in perspective, it is important to
keep in mind the limitations on the momentum and ener-
gy resolution imposed by the finite size and temperature
of the lattices on which the simulations have been carried
out. The typical spatial lattice used in the Monte Carlo
simulations is an 8 X8 lattice. Physically, if each site is
thought of as a Cu site, then this corresponds to roughly
a 30 AX30 A region. Alternatively, the Ap resolutions
are 1 of a reciprocal lattice vector. At half filling,
(n >=<niT +n; ) =1, where there is no fermion deter-
minantal sign problem, one can easily go to temperatures
T=0.1 in units of the hopping ¢. This corresponds to an
energy scale of & of the bandwidth. However, when the
system is doped away from half filling (e.g., {(n ) =0.85),
the sign problem limits the temperature that can be
reached. Typically the simulations we will discuss have

T=0.2 corresponding to an energy of ;5 of the band-
width.
In the intermediate-coupling regime, the two-

dimensional Hubbard model has a high-energy scale set
by the bandwidth 8¢ and an on-site Coulomb interaction
U which is of order the bandwidth. Correspondingly, the
short-distance scale is the lattice spacing. The next
lower-energy scale is set by the exchange interaction en-
ergy J ~4t?/U. For U=4t, this strong-coupling expres-
sion for J, while only approximate, gives J ~ 1 in units of
t. Here and in the following we will measure energy in
units of . Thus a temperature T'=~0.2 is a factor of order
5 below J. However, depending upon the doping, the
spin-fluctuation energy scale can be as much as an order
of magnitude below J. Likewise the spin-fluctuation
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correlation length can be of order the Monte Carlo lattice
size. Thus calculations on 8 X 8 lattices with T"=0.2¢ are
in a region where we should be able to begin to see the
manifestations of the characteristic spin-fluctuation
many-body effects. However, it will not be possible to
reach definitive conclusions regarding the existence of
Fermi-liquid behavior or superconducting pairing.

In Sec. II, we begin by examining the momentum,
Matsubara frequency, and temperature dependence of the
spin susceptibility x(q,i®,,). We show that the Monte
Carlo data can be fit using an RPA form with a reduced
effective U. In terms of this same effective U, one can
construct the Berk-Schrieffer’ spin-fluctuation interac-
tion. We then discuss the extent to which this interac-
tion, neglecting vertex corrections, can describe the
Monte Carlo results for the electron self-energy, various
pair-field susceptibilities, and the effective particle-
particle interaction. In Sec. III the nature of the short-
range correlations produced by the particle-particle
scattering and the effective value of U used in Sec. II are
discussed. We find that it is important to include self-
energy effects along with particle-particle scattering. Fol-
lowing this, the leading vertex corrections are calculated.
Section IV contains our conclusions.

II. MONTE CARLO AND WEAK-COUPLING
RESULTS

A. Magnetic susceptibility

At half filling, the ground state of the two-dimensional
Hubbard model has long-range antiferromagnetic or-
der.®® When the system is doped away from half filling,
Monte Carlo calculations show evidence for short-range,
incommensurate antiferromagnetic fluctuations. These
fluctuations can mediate an effective interaction between
electrons. Thus we begin by examining the frequency-
and wave-vector-dependent magnetic spin susceptibility

ia)m'r l

Y(q,io, )= fOBdTe ~ S Hm (omF0)
!

(1)

which characterizes the spin fluctuations. Here
m,-+-——c,-TTcil, m(r)=exp(HT)m; exp(—HT), and
®,, =2mnT is the usual Matsubara Bose frequency.

Monte Carlo results for x(q,0) with U=4¢, T=0.2¢
and an average site occupation of {(n ) =~0.87 are shown
in Fig. 1(a) for an 8 X 8 lattice. The inset shows the path
in g-space for which y(q,0) is plotted. For this tempera-
ture and finite lattice size, the peak in x(q,0) occurs at
(7,7). However, the tendency towards an incommensu-
rate structure in which the (,7) peak splits and moves
down the (g,,7) and (7,q,) edges rather than the g, =g,
diagonal is seen in the asymmetry of the curve. At this
temperature, the results obtained for the 8 X8 lattice are
in close agreement with those on larger lattices except for
q=(m,7), where the 8 X8 result is of order 10% below
the extrapolated bulk limit. Here we will concentrate on
the 8 X8 lattice, for which we have obtained a number of
results.
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A modified RPA form for y, in which an effective
Coulomb interaction U replaces U, provides a useful pa-

rametrization of the numerical Monte Carlo data.!®®
Here
. Xolq,iw,,)
XRPA(q’lwm )= 2 - ’ (2)

1— Uxo(q:iwm )
with xo(q,iw,,) the tight-binding Lindhard susceptibility
Slepig)—flep)

@ —(Epyq—Ep)

: -1
Xolq,iw,, )= N %‘, ; (3)

For a square lattice with only a near-neighbor hopping ¢,

€p,= —2t(cosp, +cosp,) . (4)

The Fermi factor f(e,)={exp[B(e,—u)]+ 1}, and p is
the chemical potential. The solid line in Fig. 1(a) shows
Xrra(q,0) calculated from Egs. (2) and (3) for a filling of
(n )=0.87 on an infinite lattice at T=0.2¢ with U=2t.
It is reasonable to expect that the effective Coulomb in-
teraction is reduced by multiple particle-particle scatter-
ing, but what we find interesting is how well this ap-
proach also fits the q, iw,,, and T dependence of
x(q,iw,,). Figure 1(b) shows Monte Carlo x(q,i®,,) and
Xrpa(Q,io,, ) results for q=(m,7) versus w,,. The decay
of x(q,iw,,) versus w,, corresponds to a characteristic
spin fluctuation frequency of order T, and the enhance-
ment of y(q=(m,m),0) at T=0.2¢ over the noninteract-
ing result is approximately 5. Similar good agreement for
the frequency dependence of x(q,iw,,) is found for other
values of q. Figures 1(c) and 1(d) show x(q,0) versus T
for q=(ar,7) and q=(0,0), respectively. Within RPA,
x(q,0) for q=(0,0) increases as T is lowered because of
the presence of the Van Hove singularity at an energy |u|
above the noninteracting Fermi surface. For a filling of
(n)=0.87, u=~—0.30t. At a temperature that is rough-
ly |u| /4, this growth in ¥(q=(0,0),0) stops. In Fig. 1(e),
the finite-size dependence of the Monte Carlo data is
shown for T'=0.25¢.

B. Single-particle self-energy

Monte Carlo simulations also give results for the
single-particle thermal Green’s function

G(1)=—(Tcy(r)cf(0)) . (5)

Here ¢/

s Creates an electron on the site j with spin s.
Fourier transforming G;;(7) in both space and imaginary
time gives

1

iw, —(g,—p)—

G(p,iw,)= (6)

S(p,iow,) ’

with w, =(2n +1)7T. It is convenient to separate 2 into
its real and imaginary parts,

3(p,iw,)=[1—Z(p,iw,)]io, —X(p,iv,) . (7)

The solid points in Fig. 2(a) is the wave-function renor-
malization parameter Z(p,iw,) versus o, for
p=(37/4,0). Figure 2(b) shows X(p,iw,)+u. One can
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FIG. 1. (a) x(q,0) vs q at T=0.2¢ for the path in g-space shown in the inset. (b) x(q,i®,,) with q=(7,7) vs 0, at T=0.2t. (c)
x(q,0) with q=(a,7) vs T. (d) x(q,0) with q=(0,0) vs 7. The solid points represent the Monte Carlo results obtained for U =4t and
(n)=0.87 on an 8X 8 lattice. The solid lines and the open circles represent the RPA results obtained for U=2¢ and (n ) =0.87 on
an infinite lattice. (e) Finite-size dependence of the Monte Carlo data for x(q,0) at T=0.25¢.
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think of X(p,iw,)+pu as the effective chemical potential
of the interacting system. As seen in Fig. 2(b), at high
frequencies it decays to a constant.

As expected, Z(p,iw, ) approaches 1 at Matsubara fre-
quencies which are large compared to the spin-
fluctuation frequency. At low frequency, Z(p,iw,) in-
creases and contributes to the mass enhancement of the
quasiparticles. At present we do not have Monte Carlo
data on sufficiently large lattices'! at low temperatures to
determine the low-temperature scaling behavior of
Z(p,iw,). If it remains finite on the Fermi surface, then
one has a Fermi liquid.

The leading spin-fluctuation contributions to the self-
energy are shown in Fig. 3. The first, Hartree, term sim-
ply shifts the chemical potential, while the remaining
terms in the top and bottom row of graphs correspond to
the Berk-Schrieffer’ longitudinal and transverse spin-
fluctuation contributions, respectively. Including the
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FIG. 2. (a) Wave-function renormalization parameter

Z(p,iw,) and (b) X(p,iw,)+p vs w, for p=(37/4,0) on an
8 X 8 lattice at {n ) ~0.87. Here the solid points are the Monte
Carlo data and the open circles are the results obtained from
Eq. (8) with U =4 replaced by U =2t in Eq. (9).
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FIG. 3. Contributions to the self-energy Z(p) given by Eq.
(8).

Hartree term in u, the contribution to = from the dia-

grams shown in Fig. 3 is

3(p,iw, —-——2 Vig,iw,,)Gylp—q,inw, —iw,,) , (8)
q,m

WithGo-l(p,iwn)zlwn_(sp_u)and
Uxo(q,iw,,) Uxd(q,iw,,)

Vigio,)= 202 m 0 om) )
1-UNqiw,) 1=Uxoq,io,)

Just as in the RPA treatment of Y, multiple particle-
particle scattering reduces U. Here we will replace U in
Eq. (9) by the effective U determined from fitting the
Monte Carlo results for y.

Using G, in Eq. (8) neglects the rainbow contributions
and the vertex corrections to 2. One could argue that
the spin-fluctuation energy is small compared to the Fer-
mi energy. However here, contrary to Migdal’s well-
known approximation'? for the electron-phonon problem,
nesting and Van Hove singularities can give rise to a
significant momentum dependence of = and may lead to
enhanced vertex corrections. Thus this procedure is an
uncontrolled approximation. However, in Sec. III B we
will study the contribution of the lowest-order spin-
fluctuation vertex corrections to the self-energy and see
that it is of order 10% in this regime of the Hubbard
model. Results for Z(p,iw,) and X(p,iw,)=p on an
8 X 8 lattice obtained without taking into account the ver-
tex corrections are compared with the Monte Carlo data
in Fig. 2.

C. Particle-particle correlations

The Berk-Schrieffer single-spin fluctuation exchange
contributions to the irreducible particle-particle interac-
tion I'; are shown in Fig. 4 and are given by

Ux3(p'—p) U*op'+p)
rl(p’|p)=U+ 202 ’ P ' .
1—-U*%p'—p) 1=Uxolp'+p)
(10)
Here we are using a notation in which p=(p,iw,). As

before, we will replace U by U in the second and third
terms. The first term remains the bare U since U is not
two-particle irreducible, and iterating on U in the two-

particle channel will reproduce the terms associated with
U.
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The approximate I';, Eq. (10), can be compared with 0 0.2 0.4 0.8 0.8 1
the Monte Carlo data in an indirect way by using it to T/t
compute the pair-field susceptibilities
o © T 0-8 T ] T I T T T r T
P,= [ 7 dr(Aa(nay0) (11) - 1
with L
t tot 0.6
A= X 8.(pleprelyy - (12) L
P -
Here we use for a local s wave g(p)=1and forad ,_ . o 04 B
wave g,(p)=(cosp, —cosp,)/2. We have calculated P, -
by summing the diagrams shown in Fig. 5. The double -
line in Fig. 5 is the single-particle Green’s function r
dressed with the spin-fluctuation self-energy and the box 0.2 -
is T';. We have also calculated P,, shown in Fig. 5, i 1
which contains only the dressed single-particle propaga- I :
tors. Both P, and P, can be obtained from the Monte 0 PR U S U R SR
Carlo simulations,’ and results comparing P, and P, are 0 0.2 0.4 0.8 0.8 1

shown in Fig. 6.

As seen in Fig. 6(a), the Coulomb repulsion strongly
suppresses the s-wave pair-field susceptibility. The
enhancement of the dxz_yz-wave pair-field susceptibility

seen in Fig. 6(b) shows that the effective interaction be-
tween the quasiparticles in this channel is attractive.
Here the weak-coupling calculation overestimates P and
P. However, their difference P — P is a factor of 2 smaller
than the Monte Carlo results. This suggests that the
effective interaction is larger than the single spin-
fluctuation exchange result.

A direct approach for obtaining Monte Carlo results
for the irreducible particle-particle interaction involves
calculating the two-particle Green’s function

RevIrallv Fx BT

- C >

FIG. 5. Diagrammatic approximation for P,. Here the dou-
ble lines denote the single-particle Green’s function dressed
with = and the box is T'; of Fig. 4. Also illustrated is P, which
does not include the particle-particle interaction vertices.

T/t

FIG. 6. P, and P, vs T for (a) s and (b) d ;_,»wave form

factors on an 8X 8 lattice at {n)=0.87. The solid and open
points are the Monte Carlo data for P, and P, respectively, ob-
tained using U=4¢. The solid and the dotted curves are the
corresponding diagrammatic results for U =4t and U =2t.

A(3,4(1,2)=— (T, 1(ry)e; \(ry)el (e 1(r)) . (13)

Then, Fourier transforming on both the space and imagi-
nary time variables allows us to determine

Alp',k'lp,k)=—38, ,8; 1-G1(p)G (k)
+%5k"p+kﬂ,'GT(p')Gl(k')

XT(p',k'|p,k)G(p)G (k) , (14)

— 1 )
T, - - T,

FIG. 7. Diagrammatic representation relating I'; (box) and I
(circle). Here the double lines are dressed single-particle propa-
gators. Usually one selects an approximate form for I'; and
solves for I'. However, the Monte Carlo calculation gives I'
and G so that we will solve this equation to obtain I';.




47 COMPARISON OF MONTE CARLO AND DIAGRAMMATIC. .. 2747

ROr—— 71— 71 7 T T ]
; (@
15 - -
FO ]
% 10 X )
EE ]
5 -
ol [ | L]
(m,0) (0,m) (-m,0) (0,—m) (m,0)
o’
Or———7 T T ]
: ONE
20 - a
3 [ ]
5 wf .
SR - :
0L T \
-10 i 1 | 1 | 1 | 1 ]
(7,0) (0,m) (-m,0) 0,—m) (m,0)
o’

-

FIG. 8. Monte Carlo results for the reducible and the irre-
ducible particle-particle interaction in the singlet channel,
T,(p’'lp) and T, (p’'lp), on an 8X8 lattice with U=4¢ and
(n)=0.87 at (a) T=0.50¢ and (b) 0.25¢. Here p=(p,iwT) with
p=(m,0) and p’=(p’,iwT) with p’ taken along the path shown
in (c).

from which one can obtain the reducible particle-particle
vertex I'(p',k’|p, k). Here p =(p,iw,) and we will calcu-
late the particle-particle interaction in the zero center-
of-mass momentum and energy channel, hence we set
k=—p and k'=—p’. In order to obtain the irreducible
particle-particle vertex I';, we use the Monte Carlo re-
sults for I' and G to solve the diagrammatic equation
shown in Fig. 7,

T (p'lp)=T(p'lp)

+ 1 STEOGKIG(—KIT (Klp), (1)
k

where T'(p’lp) is used as a short notation for
I'(p’,—p'lp, —p). This procedure is essentially the oppo-
site one from the usual diagrammatic approach in which
an irreducible vertex such as I'; is selected and then I' is
calculated from Eq. (15).

Using Monte Carlo results for I'(p'|p) and G(p,iw,)
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p

(0,—m) (m,0)

FIG. 9. Diagrammatic results for the reducible I';(p’|p) and
the irreducible T, ;(p’|p) in the particle-particle channel assum-
ing that the dominant interaction in the particle-particle chan-
nel is the single spin-fluctuation exchange. Here results are
shown from an 8 X 8 lattice with U=4¢, U=2t, and {(n ) =0.87
at (a) T=0.50¢ and (b) T=0.25¢.
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we have solved the integral equation, Eq. (15), for I'; on
an 8X 8 lattice with U=4¢ and {n ) ~0.87. Symmetriz-
ing I'; gives the irreducible interaction in the singlet
channel

TC(p'lp)=HT(p'lp)+T(=p'lp)) . (16)

In Fig. 8(a), both the reducible I';(p’|p) and the irreduc-
ible T';,(p’|p) in the singlet channel are plotted as a func-
tion of p’' for w,=w, =7T at T=0.50t. Results at
T =0.25¢ are shown in Fig. 8(b). In these plots p’ follows
the contour shown in Fig. 8(c), while p is kept fixed at
(m,0). The large error bars for p’=(s,0) and (—,0)
arise from the need to subtract out the first term in Eq.
(14) for these wave vectors. Similar results are shown in
Figs. 9(a) and 9(b) for the single spin-fluctuation exchange
interaction. One observes that the single spin fluctuation
exchange result is about a factor of 2 smaller than the
Monte Carlo data. While replacing U =4 by U =2 in the
susceptibility provided a sensible fit to the Monte Carlo
data, it is clear that this simple procedure fails to repro-
duce the effective particle-particle interaction.

III. HIGHER-ORDER CORRECTIONS

The diagrammatic calculations described in Sec. II are
based upon using a renormalized Coulomb interaction U
which is chosen to fit the RPA form for x(q,iw,,) to the
Monte Carlo results. Physically, the reduced U takes
into account the Coulomb correlations, which act to
suppress double occupation of a site. Kanamori'® sug-
gested that this renormalization can be approximated by
replacing U by the particle-particle ¢ matrix. Here we
will examine this for the Hubbard model and show that
in addition to the ¢ matrix, self-energy effects and vertex
corrections are required. We will then calculate the
lowest-order vertex corrections and examine their effects
on 2 and the irreducible singlet particle-particle pairing
interaction.

A. Magnetic susceptibility within Kanamori’s approach

For an interacting system Y(q,i®,, ) can be written as

X @io,)=—-L S Glp+q)G(p)
N p

+

2
%1 E‘G(P'+Q)G(p’)i"q(p'|p)
pp

XG(p+q)G(p) . 17

Here fq( p'lp) is the reducible particle-hole ¢ matrix with
a center-of-mass momentum and energy ¢ =(q,!®,, ), and
G(p) is the single-particle Green’s function. The reduc-
ible T, (p’|p) in turn can be expressed in terms of the ir-
reducible particle-hole vertex I'; q(p’lp ):

T,(p'lp)=T,(p'Ip)

—]—7\; 3 T, (0 1k)G(k+q)G (KT, (Klp) .
k

(18)

G 0

SR R0,
T —
4,——)-4

FIG. 10. Feynmann diagrams contributing to x(q,i®,,) and
the f-matrix equation expressing the reducible I in terms of the
irreducible I'; in the particle-hole channel.

+

<
1

Feynmann diagrams representing Eqgs. (17) and (18) are
given in Fig. 10. The random-phase approximation
amounts to assuming that I—“,,q(p’|p) is a constant and
equal to the bare interaction strength U. Kanamori'
showed, within the context of ferromagnetic fluctuations
in an itinerant model, that the renormalization of the
strong Coulomb repulsion at the cost of kinetic energy
can be diagrammatically taken into account by summing
the set of particle-particle t-matrix diagrams shown in
Fig. 11. The contribution of these diagrams to ', can be
expressed by

= AR U

Tp(p'lp) T UP(qia.) (19)
which is independent of p' and p and only depends on gq.
Here P(q,iw,,) is given by

P(q,iwm)—‘——;—EG(p +@)G(—p) . (20)
p

Ordinarily, one would use Eq. (19) for T, to calculate T
and then use it to obtain x(q,iw,, ). Because of the q
dependence of T';, a closed form analytic expression for
x(q,iw,,) is not obtainable. However, Chen et al .6 sug-
gested that an approximate solution for x(q,iw,,) is the
RPA expression of Eq. (2) with U4, given by

U

(]redE 1+U<P()(q,0)>q . (21)

substituted for U. Here, P, is obtained from Eq. (20) us-
ing the noninteracting Green’s function Gy(p), and the
average of Py(q,0) is taken over the whole Brillouin zone.
The reduced Coulomb interaction U4 calculated in this
fashion, is dependent on the filling and the temperature.
Figure 12 shows the temperature dependence of U, 4 for
{(n)»=0.87 and U=4¢ on an infinite lattice. We observe
that at low temperatures, and especially around 7 ~0.2t,
the value of U_4(T) is very close to 2¢. Hence the fit to
Monte Carlo data on x(q,iw,,) that we have seen in Sec.
11 is consistent with this approximation.

T
—] D —y—? X/

T = +oh
>— |, >l ot |

RPN

FIG. 11. Multiple particle-particle scatterings contributing
to the particle-hole irreducible I'; in Kanamori’s approach.
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FIG. 12. Temperature dependence of U, 4(7) as given by Eq.
(22) for U=4t, {n ) =0.87 on an infinite lattice.
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FIG. 13. Momentum dependence of x(q,0) obtained from
the numerical solution of Egs. (18)—(20) using the bare Green’s
function Gy(p,iw,) (open circles) compared to Monte Carlo
data (full circles). Here results are given on an 8 X8 lattice for
U=4t,{n)=0.87, (a) T=1t and (b) T=0.50t.
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It is possible to numerically solve Egs. (17) and (18) for
x(q,iw,,) on an 8 X8 lattice using T'; of Eq. (19). Results
for x(q,0) vs q obtained using the bare Green’s function

1

Go(p) i, —(e,— 1) (22)
in Egs. (17) and (18) are given in Figs. 13(a)-13(b). We
see that this more exact approach to calculating x(q,0)
does not give as good agreement with Monte Carlo as us-
ing the RPA form for y(q,i®,,) with the expression U,
of Eq. (21). Next we solve Egs. (17) and (18) using the
Green’s functions obtained from Monte Carlo simula-
tions. These Green’s functions have the full self-energy
due to spin fluctuations. Using Gy(p)’s corresponds to
basically dressing the G’s with spin fluctuations. The re-
sults, in this case, are shown in Figs. 14(a)—14(b). The
agreement with Monte Carlo results is significantly better
than what we have seen in Figs. 13(a)—13(b) using the
bare propagators.'* Here x(q,0) calculated perturbatively
is smaller than the Monte Carlo data. This is in agree-
ment with the notion that higher-order corrections to the
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FIG. 14. Same as in Fig. 13 but using the Monte Carlo
Green’s function, which includes the exact self-energy due to
the Coulomb repulsion, at (a) T=0.50z and (b) T'=0.20¢.
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interaction, which are left out in this calculation, enhance
x(q,0).

Thus while replacing U by U in a RPA form for y pro-
vides a useful fit of the Monte Carlo data, piecemeal ap-
proximations such as the f-matrix approximation actually
make things worse. One must keep t-matrix, self-energy,
and vertex corrections on the same footing in order to
achieve a reasonable fit. This suggests that conserving
approximations are required.!?

B. Higher-order contributions
to the single-particle self-energy
and the irreducible particle-particle vertex

In Sec. IIB, we calculated the lowest-order spin-
fluctuation contributions to the single-particle self-energy
and the particle-particle interaction. Here we examine
this approximation by computing the next-order dia-
grams in the spin-fluctuation exchange, and compare
them with the lowest-order results. We find that these
higher-order contributions to = are small in the parame-
ter space of the Hubbard model that we are studying. In
addition, we find that the second-order corrections are
not sufficient to fit the Monte Carlo results for the
particle-particle interaction. Yonemitsu'® has carried out
similar calculations but for different parameter values.
He also finds that these corrections enhance the RPA be-
havior.

The second-order spin-fluctuation corrections to the
self energy, labeled =?(p) and =?*(p), are shown di-
agrammatically in Fig. 15. Here y'®(p’|p) and y®(p’|p)
are the vertex corrections illustrated in Fig. 16. Analytic
expressions for these diagrams are given in the Appendix.
Their overall contribution to the self-energy is
2329(p)+=2%(p). The resultant Z(p,iw,) and
X(p,iw,)+u versus w, for p=(37/4,0) are shown in
Fig. 17. We see that while the corrections to these quan-
tities are small, they improve the agreement with the
Monte Carlo data.

To second order in the exchange of spin-fluctuations,
there are contributions to I'; from vertex corrections and
also from diagrams involving the crossed exchange of two
spin fluctuations.!” The leading vertex corrections I'{?®
and T'\*® are given in Fig. 18. The diagrams involving
the crossed exchange of spin fluctuations, I'*#) and %%
are shown in Fig. 19. These are of special interest, since
they have been proposed to mediate the pairing in the

:
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FIG. 15. Diagrammatic representation of the lowest-order
vertex corrections to 2(p,i®, ).
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FIG. 16. Diagrammatic representation of y'®(p’|p) and

,yib)(pllp ).
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FIG. 17. (a) Wave-function renormalization parameter

Z(p,iw,) and (b) X(p,iw,)+u vs w,/t for p=(37/4,0) on an
8% 8 lattice for U=2t, (n)=0.87, and T=0.2t. Here
Z(p,iw,) and X(p,iw,)+p have been calculated by including
the effects of the vertex corrections.
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FIG. 18. Diagrammatic representation of the vertex correc-
tions to the single spin-fluctuation exchange interaction.

spin bags picture'®!” in the weak-coupling limit of the

Hubbard model. The contributions to I'; from the vertex
corrections and the crossed diagrams are
P =2rP+1? and M=%+ 20, respectively.

In order to explore these corrections and their possible
low-temperature behavior we have used a 128 X128 lat-
tice for T=0.20¢ and 0.10z. In Figs. 20(a)-20(c) we com-
pare the magnitudes of the vertex corrections and the
crossed diagrams with the single spin-fluctuation ex-
change interaction of Eq. (10) in the singlet channel for
©, =0, =nT. In these figures 6, =tan"'(p, /p;), and p
is kept on the Fermi surface along the (1,0) direction.
The single spin-fluctuation exchange interaction shown in
Fig. 20(a) peaks for (7, 7) momentum transfer and has a
large constant background of order 5¢. The vertex-
correction contributions shown in Fig. 20(b) is smaller in
magnitude and peaks for momentum transfers q~(0,0).
The contribution from the crossed diagrams, shown in
Fig. 20(c), exhibits the momentum structure proposed by
Kampf and Schrieffer;!? it is repulsive for momentum
transfers q~ (m,7) and attractive for q~(0,0), both by
direct scattering and via umklapp. However, its magni-
tude is small!® relative to the lowest-order contributions
shown in Fig. 20(a). Hence, even though the second-
order corrections give better results for 2(p), the underly-
ing particle 2(p), the underlying particle-particle interac-
tion is still underestimated by the spin-fluctuation ex-
change interaction including second-order contributions.
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FIG. 19. Diagrammatic representation of the crossed ex-
change of two spin fluctuations.
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particle-particle interaction in the singlet channel, I",,X(p’|p ),
for the single spin-fluctuation exchange. Here p =(p,iwT) with
p=(pr,0) and p'=(p’,imT) with p’ taken on the Fermi surface.
Also 6,=tan"'(p,/p:), U=4:, U=2t, (n)=0.87, and
T=0.10¢ and 0.20z. (b) Same as in (a) but for T{¥(p'[p). ()
Same as in (a) but for T{¥(p’|p).
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IV. CONCLUSIONS

In this paper we have compared the results obtained
from quantum Monte Carlo simulations for y(q,iw,,),
2(p,iw,), various pair-field susceptibilities, and the
particle-particle scattering vertex I'(p',iw, |p,iw,) with
diagrammatic spin-fluctuation calculations. In the
intermediate-coupling regime U =4t, we found that the
spin susceptibility x(q,iw,,) could be fit by an RPA-like
form with a reduced interaction U=2¢. Good agreement
for the momentum, frequency, and temperature depen-
dence was found for temperatures down to 77=0.2¢. In
the remainder of the paper, we addressed the question of
whether the same type of renormalized weak-coupling
theory can also describe the single-particle and the
particle-particle properties of the Hubbard model in the
regime of interest. For this purpose we first calculated
the single-particle self-energy to first order in the spin-
fluctuation exchange. Reasonable agreement with the
Monte Carlo results for the quasiparticle renormalization
Z(p,iw,) and the effective chemical potential
X(p,iw,)+p were obtained. An indirect comparison of
the particle-particle interaction was obtained by compar-
ing the s- and dngyz-wave pair-field susceptibilities down
to T~0.2¢. In this regime of the Hubbard model, pairing
correlations in the singlet channel with dxz_yz—wave or-

bital symmetry are enhanced by the on-site Coulomb
repulsion, while the s-wave pair-field susceptibility is
suppressed.

The relative enhancement of P, over P, obtained from
the Monte Carlo calculations is larger than that predicted
from the single spin-fluctuation exchange. In order to
obtain further information on the nature of the particle-
particle interactions, we have used Monte Carlo results to
determine the irreducible particle-particle interaction
vertex. Here we see a clear failure of the single spin-
fluctuation exchange, which gives a significantly weaker
scattering. However, this is not in contradiction with the
agreement obtained for =, since it involves a different
average of I';,. When one compares P, —P, or directly
I';, one sees that the spin-fluctuation exchange underesti-
mates the effective particle-particle interaction. We have
also seen that the second-order spin-fluctuation correc-
tions are not sufficiently strong to make up for the
difference between the Monte Carlo data and the lowest-
order spin-fluctuation exchange.

APPENDIX

The second-order spin-fluctuation correction to X is
329 (p)+2328)(p), where

UZXQ(k -P)

T
SCp)=—= Golk)—————yDplk), (A1)
P N% 0 1—U2)((2)(k—p)7/ 4
and
T U
32(p)=—=% Gylk)————vD(plk) (A2)
P N% M Uk —p) | 4

with
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T Uxok —p)
(a)f .1 — ’
(p'lp)== 3 Gk)Gk—p+p)—FF——
=53 PP vtk —p)
(A3)
and
T U2X0(k—p)
Op'lp)=—3 Gk)G(k—p+p' ).
rwle=1 2 GGk =p P )Tk —p)
(A4)

Because of the minus sign in Eq. (A2), the contributions
from =29(p) and 2?Y(p) interfere to give a weaker
effect.

Similarly, the second-order vertex correction to I'; is
rP=2r+ %Y, where

T UzXo(k_P)
L' lp)==3 Gk)G(k+p'—p)————
PIPI= N 2 P T Uk —p)
v
1=U5(p'—p)
Uxok+p')
_u (AS)
1—Uyxolk+p")
and
T UZXO(k—p)
r'?(p'lp)=-— 3 Gk)G(k+p' —p)————
7p'lp) N§ (k)G (k+p p)l_UXO(k_p)
U*op'—p)
XolP P (A6)

1—UX3p'—p)

Just as for 3?%(p) and =®(p), I'*® and I'?® have
different signs. This reduces the effect of the total vertex
correction on I';.

Finally, the contributions from the crossed diagrams
are NV =10+ 20%%) where

U

T
L p'lp)=—— 3 Gk)G(k—p'—p)——5 77—
e N = P Uk —p)

U

Xh—
1—U2X(2)(k—p’)
’szo(p'+p) (A7)
and
T szo(p’+p)
F(Xb)( "p)y=——=— G(k)G(k —p'— .
Pl = =y OGP
U
X—_—
1—U2)((2,(k-—p’)
U3 2( "4 )
XoP TP (A8)

1= Uxyp'+p)
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