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Abstract. We study the strength and the temperature scale of the d(x2-y2) pairing correlations in the Hubbard 
model on a ladder lattice using Quantum Monte Carlo (QMC) simulations. In particular, we present QMC 
results on the particle-particle interaction and the solution of the Bethe-Salpeter equation for the d(x2-y2)-wave 
BCS channel. These data show that there are strong d(x2-y2) pairing correlations in the Hubbard ladder for 
certain values of the model parameters. 

1 Introduction  

The pairing correlations in the Hubbard ladder have been 
studied in detail using various techniques of many-body 
physics [1-6]. In particular, the DMRG calculations 
found that the d(x2-y2)  pairing correlations are strongest 
near half-filling for Coulomb repulsion in the  
intermediate coupling regime and for hopping anisotropy  
t┴/t≈1.5. In fact, the two-leg Hubbard ladder is probably 
the only model where  it is known from exact calculations 
that the pairing  correlations get enhanced by turning on 
an onsite Coulomb repulsion in the ground state. Hence, 
it is important to know the characteristic  temperature 
scale and the strength of the pairing correlations in this 
model. Here, we present numerical results with this 
purpose. 

In the following, we will study the momentum 
dependence of the reducible particle-particle interaction Γ 
in the BCS channel, and show QMC results on the  
evolution of Γ with temperature T, doping and the 
Coulomb repulsion U. In order to investigate the strength 
of the pairing corelations in this system, we will present 
the solution of the Bethe-Salpeter equation in the BCS 
channel. These QMC results show that the two-leg 
Hubbard ladder exhibits strong d(x2-y2) type pairing 
correlations for certain values of the model parameters. 

The DMRG calculations have found that the pairing 
correlations are most enhanced in the intermediate 
coupling regime and near half-filling for values of t┴/t  
for which the top of the bonding band and the bottom of 
the antibonding band are near the Fermi level [4]. In this 
case, the QMC data show that, as the temperature 
decreases, a large repulsive peak develops in Γ for 
scattering processes involving q=(π,π) momentum 
transfer. In addition, Γ becomes strongly attractive for 
scatterings with q≈0 momentum transfer when the 

incoming and the outgoing particles are on the Fermi 
surface. It will be seen that this is due to resonant 
scattering in the d(x2-y2) pairing channel. These QMC 
data also show that Γ depends not only on the momentum 
transfer but also on the momentum of both the incoming 
and the outgoing fermions. For instance, the q=0 resonant 
scattering is much weaker at the saddle points (0, ±π) and 
(±π,0). In addition, we will see that at half-filling the q=0 
resonant scattering is significantly reduced with respect 
to the q=(π,π) scattering. The QMC calculations find that, 
at low temperatures, the leading eigenvalue of the Bethe-
Salpeter equation has an eigenfunction which has d(x2-y2) 
type symmetry in the sense that it  changes sign as one 
goes from (π,0) to (0,π) in the Brillouin zone. In addition, 
the  temperature evolution of the d(x2-y2) eigenvalue 
follows the development of the AF correlations. Here, we 
will see that the d(x2-y2)  eigenvalue of the Bethe-Salpeter 
equation becomes as large as 0.75 at T=0.1t for U=4t and 
6% doping, while Γ attains values which are an order of 
magnitude larger than the bare Coulomb repulsion. The 
results presented here also show that the d(x2-y2) 
eigenvalue and Γ get enhanced when U varies from 4t to 
8t. 
 
2 Model  
 
The two-leg Hubbard ladder is defined by 
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where t (t┴) is the hopping parameter parallel 
perpendicular) to the chains. The operator c+

iλσ (ciλσ) 
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Fig. 1. Hubbard model on a ladder lattice with parallel and 
perpendicular hoppings, t  and t┴, and onsite Coulomb 
repulsion U. 
 
creates (annihilates) an electron of spin σ at site i of chain 
λ, the electron occupation number is niλσ =c+

iλσ ciλσ, and μ 
is the chemical potential. In addition, periodic boundary 
conditions are used along the chains. In the ground state 
and for U=4t, the d(x2-y2) pairing  correlations are most 
enhanced near half-filling for t┴≈1.6t [4]. When U=8t, 
this occurs for t┴≈1.4t. Here, the QMC data will be 
presented using these parameter sets for a 2×16 lattice. 

In obtaining the data presented here, the 
determinantal QMC technique described in Ref. [7] was 
used. The calculation of the reducible interaction Γ 
follows the procedure given in  Refs. [8,9] for the two-
dimensional case. In this procedure, Γ is obtained from 
the QMC measurement of the two-particle Green's 
function Λ defined by 
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where Tτ is the τ-ordering operator, xi=(xi,τi) denotes both 
space and  Matsubara imaginary-time variables, and cσ(xi) 
(c+

σ(xi)) annihilates (creates) an electron of spin σ at xi. 
By Fourier transforming with respect to xi and τi, one 
obtains 
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where p=(p,iωn), Gσ(p) is the single-particle Green's 
function which is obtained separately by QMC, and 
Γ(p',k'|p,k) is the reducible particle-particle vertex. The 
single-particle Green's function is defined by 
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and its Fourier transform by G(p,iωn)= ∫0

β dτ exp(iωnτ) 
G(p,τ) where ωn=(2n+1)πT is the fermion Matsubara 
frequency. The BCS component of the particle-particle 
vertex is Γ(p',-p'|p,-p), which will be denoted by Γ(p'|p) in 
the following. Figure 2 shows an illustration of Γ(p'|p), 
where the incoming fermions at (p,iωn) with up spin and  
(-p,-iωn) with down spin scatter to states (p',iωn') with up 
spin and (-p',-iωn') with down spin by exchanging 
momentum q=p'-p and Matsubara frequency ωm=ωn'- ωn. 
The reducible interaction Γ is related to the irreducible 
interaction ΓI by the t-matrix equation, 
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Fig. 2. Feynman diagram for the reducible particle-particle 
interaction Γ(p'|p) in the BCS channel. 
 
In BCS, ΓI is the effective pairing interaction.  

We perform a quantitative study of the pairing 
instability by solving the Bethe-Salpeter equation in the 
BCS channel which is given by 
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with p=(p,iωn) and ωn=(2n+1)πT. Here, λα is the 
irreducible eigenvalue in channel α, and φα(p) is the 
corresponding eigenvalue. For a three-dimensional 
infinite system, when the maximum λα reaches 1, this 
signals a BCS instability to a state where the pair-wave 
function at Tc has the form of the corresponding   
eigenfunction φα(p,iωn). In this paper, the discussion will 
concentrate on the momentum structure of the reducible 
interaction in the singlet channel, 
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and on the temperature evolution of the leading 
eigenvalue of the Bethe-Salpeter equation.  
 
3 QMC data 
 
In this section, we will show QMC data for U=4t and 
t┴≈1.6t, and U=8t and t┴≈1.4t. In the following, the QMC 
data on Γs(p’,iωn’|p,iωn) will be shown at the lowest 
Matsubara frequency ωn=ωn'=πT for these sets of model 
parameters. These QMC results will show that the 
structure in Γs(p’,iπT|p,iπT) depends on where p' and p 
are located in the Brillouin zone. In particular, Γs depends 
strongly on where p and p' are located with respect to the 
Fermi surface or the saddle points. In order to display 
these features, Γs(p’,iπT|p,iπT) will be plotted as a 
function of p while p' is kept fixed at various points in 
the Brillouin zone. On the 2×16 lattice for t┴=1.6t and 
<n>=0.94, the tight-binding band structure ɛp=-2tcos(px)-
t┴cos(py)-μ has Fermi surface crossing points near 
(±3π/4,0) and (±π/4,π). These momentum are represented 
by the filled circles in Fig. 3. The single-particle spectral 
weight A(p,ω) for the two-leg Hubbard ladder, which 
was calculated by the maximum-entropy analytic 
continuation of the QMC data find that due to the 
Coulomb correlations A(p,ω) gets redistributed and 
renormalized. However, for the 2×16 lattice with the 
parameters U=4t, t┴=1.6t, <n>=0.94 and T=0.1t, the  
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Fig. 3. Illustration of the Brillouin zone for the 2×16 lattice. The 
filled circles at (±3π/4,0) and (±π/4,π) represent the Fermi 
wavevectors of the noninteracting system for t┴=1.6t and 
<n>=0.94. 
 
Fermi surface crossing points are close to those of the 
noninteracting case, and they occur near (±3π/4,0) and 
(±π/4,π). In the Section 3.2, Γs(p’,iπT|p,iπT) versus p will 
be plotted for p' located at (0,π) and at (π/4,π). 
 
3.1 Single-particle spectral weight 
 
We begin presenting the QMC data by first showing the 
momentum and frequency dependence of the single-
particle spectral weight A(p,ω), because it plays an 
important role in determining the solution of the Bethe-
Salpeter equation. We obtained A(p,ω) by using the 
maximum-entropy procedure from the QMC data on 
G(p,τ). Figure 4 shows A(p,ω) versus ω at different  
p=(px,py) for parameters T=0.1t, U=4t, t┴=1.6t and 
<n>=0.94. Here, the solid curves denote results for the 
bonding (py=0) and the dotted curves are for the 
antibonding (py=π) band. When  interpreting the 
maximum-entropy images of A(p,ω), it is necessary to be 
cautious, since this technique has a finite resolution 
which worsens away from the Fermi level. In this respect, 
we note that the QMC data on G(p,τ) which were used in 
this procedure had an error covariance matrix which 
exhibited a continuous eigenvalue spectrum. In addition, 
the  classical and the Bryan's maximum-entropy 
algorithms yielded identical results for A(p,ω). Here, we 
will use the maximum entropy results mainly for 
determining the Fermi wavevectors. In Fig. 4, for py=0, 
we observe a peak which moves to higher energy as px 
goes from 0 to 3π/4. At p=(3π/4,0), most of the weight in 
A(p,ω) is contained in the peak which is centered ≈0.3t 
below the Fermi level. As p goes from (3π/4,0) to (π,0), 
the main peak in A(p,ω) does not cross the Fermi surface 
but remains pinned right below it, while some of the 
spectral weight gets transferred to a second peak above 
the Fermi level. At p=(0,π) the spectral weight again 
consists of two peaks. The one which is lying lower in 
energy is located near the quasiparticle position of the 
noninteracting system. The second peak is about 1.8t 
higher in energy. As p moves from (0,π) to (π/4,π), the 
peak lower in energy has some of its spectral weight 
transferred to the second peak. In addition, at p=(π/4,π) it 
is seen that the lower peak develops a suppression at  

 

 
Fig. 4. Single-particle spectral weight A(p,ω) vs ω at various p. 
The solid and dotted curves represent the bonding (py=0) and 
antibonding (py=π) bands, respectively. These results are for 
T=0.1t, U=4t, t┴=1.6t and  <n>=0.94. The arrows denote the 
quasiparticle positions for the U=0 case. 
 
ω≈0. At higher temperatures, this suppression goes away 
and a single peak is recovered at the Fermi level. Since 
the maximum-entropy technique has finite resolution, this 
suppression of A(p,ω) at the Fermi level might be an 
artifact of the analytic continuation. However, it is also 
possible that A(p,ω) at the Fermi level is getting 
suppressed because of the strong scattering which 
develops for these wave vectors at low T, as we will next 
see in the QMC data on Γ. Finally, as p goes from (π/4,π) 
to (π,π), the lower peak loses more of its weight to the 
peak at higher energy, and they both disperse away from 
the Fermi level.  
 
3.2 Pairing instability 
 
In order to show the d(x2-y2) symetry of the leading 
pairing instability, we present QMC data on the Bethe-
Salpeter eigenfunction φd(p,iωn). In Figure 5, the 
momentum dependence of φd(p,iωn) is plotted for the 
lowest Matsubara frequency iπT. Here, we note that 
φd(p,iπT) changes sign as p goes from ≈(π,0) to ≈(0,π) 
and, hence, φd has d(x2-y2) type symmetry. We also note 
that, for the antibonding band, the peak in φd(p,iπT) 
occurs at px=π/4. At higher temperatures, this peak moves 
to (0,π). On the other hand, for the bonding band we find 
that φd(p,iπT) has maximum amplitude at (π,0) at these 
temperatures. 
 
3.2.1 QMC data on Γs for U=4t 
 
Next, we discuss the QMC results on the momentum 
dependence of reducible particle-particle interaction in 
the singlet channel. Figure 6 shows Γs(p',iπT|p,iπT) for 
<n>=0.94 at various temperatures. In Fig. 6(a), 
Γs(p',iπT|p,iπT) is plotted as a function of p while p' is 
kept fixed at (π/4,π). In the left panel of Fig. 6(a), px is 
scanned from -π to π while py is kept fixed at 0, and in the  
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Fig. 5.  Eigenfunction φd(p,iπT) versus p. These results are for 
T=0.1t, U=4t, t┴=1.6t and  <n>=0.94.  
 
right panel px is scanned while py=π. Here, we observe 
that sharp structures  develop in Γs as T decreases from 
0.25t to 0.1t. In the left panel of Fig. 6(a), we see that a 
peak develops in Γs when p≈(-3π/4,0). The location of 
this peak  corresponds to a scattering process involving 
momentum transfer q=(π,π) (backward scattering). In 
addition, in the right panel of Fig. 6(a), we see that a dip 
develops in Γs when p is located  near p'=(π/4,π), 
corresponding to zero momentum transfer (forward 
scattering). This dip is because of resonant scattering in 
the d(x2-y2)-wave BCS channel, which will be further 
discussed below. In Section 4, we will see that when a 
d(x2-y2)-wave superconducting instability is approached 
in a three-dimensional infinite system, Γs(p',iπT|p,iπT) on 
the Fermi surface diverges to +∞ for scatterings involving 
large momentum transfer, and to -∞ for q=0 scatterings. 
In Fig. 6(a), we observe that Γs is developing large 
repulsive and attractive peaks for scatterings on the Fermi 
surface for T≤0.125t. The development of the dip in Fig. 
6(a) means that resonant scattering in the d-wave BCS 
channel is taking place already at these temperatures. 

In Fig. 6(b), Γs(p',iπT|p,iπT) versus p is plotted in 
the same way as in Fig. 6(a) but for p' located at the 
saddle point (0,π). In this case, Γs(p',iπT|p,iπT) develops 
a peak for p≈(±π,0), corresponding to scatterings with 
q=(π,π) momentum transfer, and the magnitude of this 
peak is comparable to that seen in the left panel of Fig. 
6(a). However, the behavior for q=0 momentum transfer 
is different. In the right panel of Fig. 6(b), we observe 
that Γs(p',iπT|p,iπT) for q=0 scattering remains pinned at 
zero for T down to 0.125t, and becomes attractive only at 
T=0.1t. Hence, in this case, the resonant scattering in Γs 
for q=0 momentum transfer is significantly weaker.  

Figure 7 shows the temperature dependence of the 
backward and the forward scattering components of Γs. 
Here, Γs is plotted as a function of the inverse  
temperature β for momentum transfers q=(π,π) (filled 
circles) and (π/8,0) (open circles), while p' is kept fixed 
at (π/4,π). In this figure, we observe that the backward 
scattering increases almost linearly with β in this  
temperature range. We also note that Γs  for q=(π/8,0) 
becomes negative for β>4/t and exhibits rapid growth as  

Fig. 6.  Reducible particle-particle interaction in the singlet 
channel Γs(p',iπT| p,iπT) versus px for py=0 (left panel) and py=π 
(right panel). In (a), p’ is kept fixed at (π/4,π) and in (b), p’ is 
fixed at (0,π). These results are for U=4t, t┴=1.6t and <n>=0.94. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7.  Reducible particle-particle interaction in the singlet 
channel Γs(p',iπT| p,iπT) versus the inverse temperature β for 
backward (q=(π,π)) and forward (q=(π/8,0)) scatterings. Here, 
p=p'+q and p' is kept fixed at (π/4,π). These results are for 
U=4t, t┴=1.6t and <n>=0.94. 
 
β increases further. These results on  Γs show that d(x2-y2) 
pairing correlations develop rapidly at low temperatures  
in this system.  
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Fig. 8.  Reducible particle-particle interaction in the singlet 
channel Γs(p',iπT| p,iπT) versus px for py=0 (left panel) and py=π 
(right panel). In (a), p’ is kept fixed at (π/4,π) and in (b), p’ is 
fixed at (0,π). These results are for U=4t, t┴=1.6t and <n>=1.0. 
 
3.2.2 QMC data on Γs at half-filling 
 
In Figure 8, we present results on the momentum 
dependence of Γs(p',iπT|p,iπT) at half-filling. Here, we 
observe that these data are qualitatively different than  
those for <n>=0.94 seen in Fig. 6. For example, as T 
decreases, we see that the q=(π,π) scatterings grow faster. 
On the other hand, the q≈0 resonant scatterings in the d-
wave channel are significantly weaker in comparison to 
the q=(π,π) scatterings. Hence resonant scattering in d(x2-
y2)-wave channel does not take place at half-filling.  The 
growth of Γs  for q=(π,π) scatterings follows the 
development of the AF correlations, which grow rapidly 
in this T range. However, the AF correlations saturate at 
lower  T, since the ground state of the half-filled Hubbard 
ladder is an insulator with short-range AF correlations. 
 
3.2.3 QMC data on Γs for U=8t 
 
Next, we investigate how Γs and λd changes as U 
increases from 4t to 8t. We will see that the overall 
features of the momentum dependence of Γs(p',iπT|p,iπT) 
are similar for U=4t and 8t, however, the magnitudes of 
Γs and λd are larger for U=8t. Figure 9 shows the 
temperature evolution of Γs(p',iπT|p,iπT) for U=8t and 
<n>=0.94. In this figure, we see that, at T=0.25t and for 
q≈(π,π), Γs becomes as large as 100t, which is an order of  

 
Fig. 9.  Reducible particle-particle interaction in the singlet 
channel Γs(p',iπT| p,iπT) versus px for py=0 (left panel) and py=π 
(right panel). Here, Γs is shown for p'=(π/4,π), U=8t, t┴=1.4t 
and <n>=0.94. 
 
magnitude larger than the bare Coulomb repulsion. Here, 
we also observe that the q≈0 scatterings become 
attractive with decreasing T, when p' is located at (π/4,π). 
However, for p'=(0,π), the q≈0 scatterings are weaker 
(not shown here). Hence, the momentum structure in Γs 
for U=8t is similar to that for U=4t, except for the 
magnitude. 
  
3.2.4 QMC data on the Bethe-Salpeter eigenvalue λd 

 
The T dependence of λd is shown in Figure 10(a) for 
U=4t and t┴=1.6t. Here, it is seen that, as T decreases, λd 
grows monotonically  eaching 0.75 at T=0.1t for 
<n>=0.94. Upon doping to <n>=0.875, λd decreases. 
Also shown in Fig. 10(b) is λd for U=8t and t┴=1.4t. At 
the temperatures where these calculations were 
performed, we find that λd is larger for U=8t.  

Next, Figures 10(c) and (d) display QMC results on 
the T dependence of the AFM susceptibility χ(q=(π,π)) 
for the same parameters as in Figs. 10(a) and (b), 
respectively. Here χ(q) is defined by 
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with m+(q) =( N1 )Σpc+
p+q↑cp↓, m-(q)=(m+(q))† and      

m-(q,τ) = exp(Hτ)m-(q)exp(-Hτ). In Figs. 10(c) and (d), 
we observe the development of the AFM correlations, as 
T decreases. However, as T→0, χ(q)=(π,π) will saturate, 
since the ground state of the Hubbard ladder has short- 
range AFM correlations. These figures also show that, 
upon doping at low T, λd decays slower than χ(q)=(π,π). 
In addition, Fig. 11 shows χ(q)=χ(q,iωm=0) versus q at 
<n>=0.94 and various temperatures. We observe that the 
large values of λd seen in Figs. 10(a) and (b) do not 
necessarily require strongly enhanced AFM correlations.  
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Fig. 10.  d(x2-y2)-wave irreducible eigenvalue λd of the Bethe-
Salpeter equation versus T (a) for U=4t and t┴=1.6t, and (b) for 
U=8t and t┴=1.4t. Antiferromagnetic susceptibility χ(q=(π,π)), 
in units of t-1, versus T (c) for U=4t and t┴=1.6t, and (d) for 
U=8t and t┴=1.4t. 
 

 

 
 
 
Fig. 11.  Magnetic susceptibility χ(q,iωm=0) versus qx for qy=0 
(left panel) and qy=π (right panel) at various temperatures (a) for 
U=4t and t┴=1.6t, and (b) for U=8t and t┴=1.4t. Here, the 
filling  <n>=0.94. 
 

3.2 Fermion sign problem 
 
The lowest temperatures at which these QMC 
calculations can be performed are restricted by the 
fermion sign problem [10]. In particular, the statistical 
error in the QMC data grows exponentially as the average 
sign of the fermion determinants <sign> decreases from 
unity. In the determinantal QMC method, the operator 
expectation values are evaluated at finite temperatures  
using the grand canonical ensemble. For the Hubbard 
model within this approach, first the Trotter breakup is 
applied. Afterwards the Hubbard-Stratonovich 
transformation is performed introducing an Ising spin 
variable Siℓ at each lattice site i and Matsubara time slice 
τℓ. In the following step, the fermion degrees of freedom 
are integrated out. The resulting expectation values are 
evaluated by averaging over the configurations of the 
spin variables {Siℓ} with the Monte Carlo technique. For 
instance, the partition function Z=Tr e-βH is obtained, 
within this approach, from 
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where Mσ({Siℓ}) are fermion matrices which are defined 
in terms of the spin variables. Depending upon the 
Hubbard-Stratonovich spin configurations, the sign of the 
fermion determinants in Eq. (9), sign({Siℓ}), can be 
negative. The average sign, 
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is the quantity which determines the lowest temperatures 
where these calculations can be performed. In Fig. 12, 
results are shown for the temperature dependence of 
<sign> for U=4t an 8t. The statistics of the QMC data 
worsens exponentially as <sign> decreases from 1.  
 
4 Resonant scattering in d(x2-y2)-wave 
BCS channel 
 
An important feature of the QMC data presented in this 
paper is the observation of resonant scattering in the d(x2- 
y2)-wave channel for q≈0 momentum transfers. This is 
due to higher-order scatterings in the t-matrix, Eq. (5), 
involving q≈(π,π) momentum transfers. In Eq. (5), when 
p'=p+q≈p, the lowest-order contribution to Γ is from the 
irreducible ΓI, which is repulsive for all p and p'. 
However, through higher-order scatterings which are 
represented by the second term on the right-hand side of 
Eq. (5), the forward scattering couples to the strongly 
repulsive backward scattering. Because of the negative 
sign in Eq. (5), this coupling gives an attractive 
contribution. So, if p'=p, then Eq. (5) reduces to   
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Fig. 12.  Average sign of the fermion determinants, <sign>, 
versus T/t for various fillings. These results are for U=4t and 
t┴=1.6t (top panel), and for U=8t and t┴=1.4t (bottom panel). 
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Hence, when Γ(k|p) is sharply peaked for k≈p+(π,π), 
Γ(p|p) becomes attractive. This is the origin of the strong  
attractive scattering in Γs(p',iπT|p,iπT) found for q≈0 
momentum transfers at the Fermi surface. In order to 
demonstrate how the repeated scatterings in the BCS 
channel affect the particle-particle interaction, it is also 
useful to consider the case of an irreducible interaction 
which is independent of frequency and separable in 
momentum. In this simple case, the irreducible 
interaction has the form 
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where α denotes the various pairing channels, Vα is the 
component of ΓI  in channel α and gα(p) is the 
corresponding form factor. Through  repeated scatterings 
in the BCS channel, the reducible becomes  
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where the bare pair-field susceptibility P  in channel α 

is defined by  
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In general, the irreducible interaction has both attractive 
and repulsive components. Here, it is clear that for 
repulsive components the momentum structure in ΓI  gets 
suppressed by particle-particle scatterings in the t-matrix. 
However, if Vα is attractive, then this component gets 
enhanced. If the d(x2-y2)-wave component is attractive 
and gets sufficiently enhanced, then the reducible Γ(p’|p) 
in Eq. (13) becomes attractive for q=p'-p≈0. The 
resonant scattering for q≈0 momentum transfer on the 
Fermi surface, which was observed in the QMC data on 
Γs, is due to this process. From Eq. (13), it is also seen 
that, if a d(x2-y2)-wave BCS instability is approached, 
Γ(p'|p) diverges to +∞ for backward scattering and to -∞ 
for forward scattering. It is useful to note that, in these 
QMC data, strong resonant scattering is observed on the 
Fermi surface at T=0.1t for U=4t and 6% doping, whereas 
for U=8t the resonant scattering is taking place already at 
T=0.25t. 
 
4 Summary and conclusions 
 
In this paper, the magnitude and the characteristic 
temperature scale of the d(x2-y2) pairing correlations have 
been investigated for the two-leg Hubbard ladder. For 
this purpose, QMC calculations have been carried out for 
the reducible particle-particle interaction in the singlet 
BCS channel, Γs, and the corresponding Bethe-Salpeter 
equation has been solved. In particular, the momentum 
dependence of  Γs has been studied as a function of the 
model parameters. An important result of these QMC 
calculations is the observation of resonant scattering in 
the d(x2-y2) BCS channel. At the Fermi surface, the 
particle-particle scatterings with q≈(π,π) momentum 
transfer become strongly repulsive, while scatterings with 
q≈0 become strongly attractive as the temperature is 
lowered. It was seen that the backward and the forward 
scattering amplitudes can attain values which are large 
compared to the bare bandwidth or the bare Coulomb 
repulsion depending on the model parameters. Another 
finding of these calculations is that the forward resonant 
scattering is anomalously weak at the saddle points. The 
momentum structure of Γs is also reflected in the 
momentum dependence of the d(x2-y2)-wave 
eigenfunction of the Bethe-Salpeter equation. These 
features are a signature of the underlying pairing 
interaction in the two-leg Hubbard ladder.  

In order to discuss quantitatively the strength of the 
d(x2-y2) pairing correlations, results were shown for the 
d(x2-y2) eigenvalue of the Bethe-Salpeter equation in the 
BCS channel. For a three-dimensional system, the BCS 
instability occurs when the leading Bethe-Salpeter 
eigenvalue reaches one. Here, it was found that, for U=4t, 
t┴=1.6t and <n>=0.94, λd increases monotonically as T is 
lowered and becomes as big as 0.75 at T=0.1t. In these 
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calculations it was also seen that λd increases as U varies 
from 4t to 8t. The QMC data presented in this paper 
provide useful information about the magnitude and the 
temperature scale of the pairing correlations in the two-
leg Hubbard ladder.  

In summary, we have investigated the d(x2-y2) 
pairing correlations in the Hubbard ladder by presenting 
QMC data on the T, U and the doping dependence of the 
d(x2-y2)-wave eigenvalue of the Bethe-Salpeter equation. 
These data show that there are strong d(x2-y2) pairing 
correlations in the Hubbard ladder for certain values of 
the model parameters. 
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